Adapting the Chinese Remainder Theorem (CRT) for integers to polynomials Announcing the...

Russian equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

How to make an animal which can only breed for a certain number of generations?

How does TikZ render an arc?

NIntegrate on a solution of a matrix ODE

Is the Mordenkainen's Sword spell underpowered?

New Order #6: Easter Egg

Table formatting with tabularx?

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

Fit odd number of triplets in a measure?

How do Java 8 default methods hеlp with lambdas?

Any stored/leased 737s that could substitute for grounded MAXs?

Is there a spell that can create a permanent fire?

3D Masyu - A Die

"Destructive power" carried by a B-52?

What was the last profitable war?

Sally's older brother

Baking rewards as operations

Why does BitLocker not use RSA?

Understanding piped commands in GNU/Linux

How does the body cool itself in a stillsuit?

What criticisms of Wittgenstein's philosophy of language have been offered?

One-one communication

Why not use the yoke to control yaw, as well as pitch and roll?

Did John Wesley plagiarize Matthew Henry...?



Adapting the Chinese Remainder Theorem (CRT) for integers to polynomials



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)mod Distributive Law, factoring $!!bmod!!:$ $ abbmod ac = a(bbmod c)$Remainder of polynomial by product of 2 polynomials$f$ dividing by $x + 1$ have remainder 4, when dividing with $x^2 + 1$ have remainder 2x+3. Find remainder dividing polynomial with($x+1$)($x^2+1$)chinese remainder theorem proofChinese Remainder Theorem InterpretationChinese Remainder Theorem clarificationI can't use Chinese Remainder Theorem.Chinese Remainder Theorem for $xequiv 0 pmod{y}$Comparing two statements of Chinese Remainder Theorem (Sun-Ze Theorem)Chinese remainder theorem methodChinese Remainder Theorem problem 7Chinese Remainder Theorem with 0 mod nSolve a system of congruences using the Chinese Remainder Theorem












2












$begingroup$


I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbb{Q}$, but I'm getting stuck.





Here's an example with integers:



$begin{cases}x equiv 1 , (mathrm{mod} , 5) \
x equiv 2 , (mathrm{mod} , 7) \
x equiv 3 , (mathrm{mod} , 9) \
x equiv 4 , (mathrm{mod} , 11).
end{cases}$



Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:



$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)



$bullet , m_i $ denotes the modulus in the $i^{mathrm{th}}$ congruence



$bullet , M_i$ denotes $dfrac{M}{m_i}$



$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).



Then $x = displaystyle sum_{i = 1}^n a_iM_iy_i$, and this solution is unique (mod $M$).





Now I want to apply the same technique to the following:



$begin{cases}
f(x) equiv 1 , (mathrm{ mod } , x^2 + 1) \
f(x) equiv x , (mathrm{mod} , x^4),
end{cases}$



where $f(x) in mathbb{Q}(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:



$M = (x^4)(x^2 + 1)$



$M_1 = x^4$



$M_2 = x^2 + 1$



Here's where I run into a problem. I need to find $y_1, y_2$ such that



$begin{cases}
y_1 (x^4) equiv 1 , (mathrm{mod} , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrm{mod} , x^4).
end{cases}$



But how does one find $y_1, y_2$?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    "Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
    $endgroup$
    – kccu
    6 hours ago










  • $begingroup$
    Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
    $endgroup$
    – Junglemath
    5 hours ago
















2












$begingroup$


I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbb{Q}$, but I'm getting stuck.





Here's an example with integers:



$begin{cases}x equiv 1 , (mathrm{mod} , 5) \
x equiv 2 , (mathrm{mod} , 7) \
x equiv 3 , (mathrm{mod} , 9) \
x equiv 4 , (mathrm{mod} , 11).
end{cases}$



Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:



$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)



$bullet , m_i $ denotes the modulus in the $i^{mathrm{th}}$ congruence



$bullet , M_i$ denotes $dfrac{M}{m_i}$



$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).



Then $x = displaystyle sum_{i = 1}^n a_iM_iy_i$, and this solution is unique (mod $M$).





Now I want to apply the same technique to the following:



$begin{cases}
f(x) equiv 1 , (mathrm{ mod } , x^2 + 1) \
f(x) equiv x , (mathrm{mod} , x^4),
end{cases}$



where $f(x) in mathbb{Q}(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:



$M = (x^4)(x^2 + 1)$



$M_1 = x^4$



$M_2 = x^2 + 1$



Here's where I run into a problem. I need to find $y_1, y_2$ such that



$begin{cases}
y_1 (x^4) equiv 1 , (mathrm{mod} , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrm{mod} , x^4).
end{cases}$



But how does one find $y_1, y_2$?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    "Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
    $endgroup$
    – kccu
    6 hours ago










  • $begingroup$
    Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
    $endgroup$
    – Junglemath
    5 hours ago














2












2








2





$begingroup$


I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbb{Q}$, but I'm getting stuck.





Here's an example with integers:



$begin{cases}x equiv 1 , (mathrm{mod} , 5) \
x equiv 2 , (mathrm{mod} , 7) \
x equiv 3 , (mathrm{mod} , 9) \
x equiv 4 , (mathrm{mod} , 11).
end{cases}$



Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:



$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)



$bullet , m_i $ denotes the modulus in the $i^{mathrm{th}}$ congruence



$bullet , M_i$ denotes $dfrac{M}{m_i}$



$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).



Then $x = displaystyle sum_{i = 1}^n a_iM_iy_i$, and this solution is unique (mod $M$).





Now I want to apply the same technique to the following:



$begin{cases}
f(x) equiv 1 , (mathrm{ mod } , x^2 + 1) \
f(x) equiv x , (mathrm{mod} , x^4),
end{cases}$



where $f(x) in mathbb{Q}(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:



$M = (x^4)(x^2 + 1)$



$M_1 = x^4$



$M_2 = x^2 + 1$



Here's where I run into a problem. I need to find $y_1, y_2$ such that



$begin{cases}
y_1 (x^4) equiv 1 , (mathrm{mod} , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrm{mod} , x^4).
end{cases}$



But how does one find $y_1, y_2$?










share|cite|improve this question









$endgroup$




I did a few examples using the CRT to solve congruences where everything was in terms of integers. I'm trying to use the same technique for polynomials over $mathbb{Q}$, but I'm getting stuck.





Here's an example with integers:



$begin{cases}x equiv 1 , (mathrm{mod} , 5) \
x equiv 2 , (mathrm{mod} , 7) \
x equiv 3 , (mathrm{mod} , 9) \
x equiv 4 , (mathrm{mod} , 11).
end{cases}$



Since all the moduli are pairwise relatively prime, we can use the CRT. Here's some notation I'm using:



$bullet , M$ denotes the product of the moduli (in this case, $M = 5 cdot7 cdot 9 cdot 11$)



$bullet , m_i $ denotes the modulus in the $i^{mathrm{th}}$ congruence



$bullet , M_i$ denotes $dfrac{M}{m_i}$



$bullet , y_i$ denotes the inverse of $M_i$ (mod $m_i$), i.e. $y_i$ satisfies $y_i M_i equiv 1$ (mod $m_i$).



Then $x = displaystyle sum_{i = 1}^n a_iM_iy_i$, and this solution is unique (mod $M$).





Now I want to apply the same technique to the following:



$begin{cases}
f(x) equiv 1 , (mathrm{ mod } , x^2 + 1) \
f(x) equiv x , (mathrm{mod} , x^4),
end{cases}$



where $f(x) in mathbb{Q}(x)$. Having checked that the moduli are relatively prime, we should be able to use the CRT. Using the notation above, I have the following:



$M = (x^4)(x^2 + 1)$



$M_1 = x^4$



$M_2 = x^2 + 1$



Here's where I run into a problem. I need to find $y_1, y_2$ such that



$begin{cases}
y_1 (x^4) equiv 1 , (mathrm{mod} , x^2 + 1) \
y_2 (x^2+1) equiv 1 , (mathrm{mod} , x^4).
end{cases}$



But how does one find $y_1, y_2$?







abstract-algebra ring-theory chinese-remainder-theorem






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 6 hours ago









JunglemathJunglemath

6017




6017








  • 1




    $begingroup$
    "Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
    $endgroup$
    – kccu
    6 hours ago










  • $begingroup$
    Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
    $endgroup$
    – Junglemath
    5 hours ago














  • 1




    $begingroup$
    "Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
    $endgroup$
    – kccu
    6 hours ago










  • $begingroup$
    Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
    $endgroup$
    – Junglemath
    5 hours ago








1




1




$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
6 hours ago




$begingroup$
"Having checked that the moduli are relatively prime..." but that means precisely that there exist $p_1(x)$ and $p_2(x)$ such that $p_1(x)x^4 + p_2(x)(x^2+1)=1$.
$endgroup$
– kccu
6 hours ago












$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
5 hours ago




$begingroup$
Are you saying that I can find $p_1(x)$ and $p_2(x)$ in general by using the extended Euclidean algorithm, and that $p_1(x)$ and $p_2(x)$ are precisely my $y_1$ and $y_2$?
$endgroup$
– Junglemath
5 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

To find $y_1$ and $y_2$ consider solving the problem
$$y_1x^4+y_2(x^2+1)=1.$$
This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
$$(x^2-1)(x^2+1)=x^4-1,$$
hence
$$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
This tells us that we can choose
$$y_1=1,$$
$$y_2=(1-x^2).$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Is there an algorithmic way of solving these, rather than relying on intuition?
    $endgroup$
    – Junglemath
    5 hours ago










  • $begingroup$
    @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbb{Q}[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
    $endgroup$
    – Paolo
    5 hours ago








  • 2




    $begingroup$
    @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbb{Q}[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
    $endgroup$
    – Melody
    5 hours ago








  • 2




    $begingroup$
    @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
    $endgroup$
    – Melody
    5 hours ago








  • 2




    $begingroup$
    @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
    $endgroup$
    – Bill Dubuque
    4 hours ago





















2












$begingroup$

Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



$ f-x,bmod, {x^{large 4}(x^{large 2}!+!1)}, =, x^{large 4}underbrace{{left[dfrac{color{#c00}f-x}{color{#0a0}{x^{large 4}}}bmod {x^{large 2}!+!1}right]}}_{large color{#0a0}{x^{Large 4}} equiv 1 {rm by} x^{Large 2} equiv -1 } =, x^{large 4}[1-x], $ by $,color{#c00}fequiv 1pmod{!x^{large 2}!+!1}$



Remark $ $ Here are further examples done using MDL (an operational form of CRT).



You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).






share|cite|improve this answer











$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196235%2fadapting-the-chinese-remainder-theorem-crt-for-integers-to-polynomials%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    To find $y_1$ and $y_2$ consider solving the problem
    $$y_1x^4+y_2(x^2+1)=1.$$
    This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
    $$(x^2-1)(x^2+1)=x^4-1,$$
    hence
    $$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
    This tells us that we can choose
    $$y_1=1,$$
    $$y_2=(1-x^2).$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Is there an algorithmic way of solving these, rather than relying on intuition?
      $endgroup$
      – Junglemath
      5 hours ago










    • $begingroup$
      @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbb{Q}[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
      $endgroup$
      – Paolo
      5 hours ago








    • 2




      $begingroup$
      @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbb{Q}[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
      $endgroup$
      – Melody
      5 hours ago








    • 2




      $begingroup$
      @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
      $endgroup$
      – Melody
      5 hours ago








    • 2




      $begingroup$
      @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
      $endgroup$
      – Bill Dubuque
      4 hours ago


















    3












    $begingroup$

    To find $y_1$ and $y_2$ consider solving the problem
    $$y_1x^4+y_2(x^2+1)=1.$$
    This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
    $$(x^2-1)(x^2+1)=x^4-1,$$
    hence
    $$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
    This tells us that we can choose
    $$y_1=1,$$
    $$y_2=(1-x^2).$$






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Is there an algorithmic way of solving these, rather than relying on intuition?
      $endgroup$
      – Junglemath
      5 hours ago










    • $begingroup$
      @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbb{Q}[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
      $endgroup$
      – Paolo
      5 hours ago








    • 2




      $begingroup$
      @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbb{Q}[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
      $endgroup$
      – Melody
      5 hours ago








    • 2




      $begingroup$
      @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
      $endgroup$
      – Melody
      5 hours ago








    • 2




      $begingroup$
      @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
      $endgroup$
      – Bill Dubuque
      4 hours ago
















    3












    3








    3





    $begingroup$

    To find $y_1$ and $y_2$ consider solving the problem
    $$y_1x^4+y_2(x^2+1)=1.$$
    This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
    $$(x^2-1)(x^2+1)=x^4-1,$$
    hence
    $$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
    This tells us that we can choose
    $$y_1=1,$$
    $$y_2=(1-x^2).$$






    share|cite|improve this answer











    $endgroup$



    To find $y_1$ and $y_2$ consider solving the problem
    $$y_1x^4+y_2(x^2+1)=1.$$
    This is not always easy to solve, but in this case a solution comes to mind. Note that by difference of squares
    $$(x^2-1)(x^2+1)=x^4-1,$$
    hence
    $$x^4+[(-1)(x^2-1)](x^2+1)=1.$$
    This tells us that we can choose
    $$y_1=1,$$
    $$y_2=(1-x^2).$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 5 hours ago

























    answered 6 hours ago









    MelodyMelody

    1,42212




    1,42212












    • $begingroup$
      Is there an algorithmic way of solving these, rather than relying on intuition?
      $endgroup$
      – Junglemath
      5 hours ago










    • $begingroup$
      @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbb{Q}[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
      $endgroup$
      – Paolo
      5 hours ago








    • 2




      $begingroup$
      @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbb{Q}[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
      $endgroup$
      – Melody
      5 hours ago








    • 2




      $begingroup$
      @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
      $endgroup$
      – Melody
      5 hours ago








    • 2




      $begingroup$
      @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
      $endgroup$
      – Bill Dubuque
      4 hours ago




















    • $begingroup$
      Is there an algorithmic way of solving these, rather than relying on intuition?
      $endgroup$
      – Junglemath
      5 hours ago










    • $begingroup$
      @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbb{Q}[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
      $endgroup$
      – Paolo
      5 hours ago








    • 2




      $begingroup$
      @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbb{Q}[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
      $endgroup$
      – Melody
      5 hours ago








    • 2




      $begingroup$
      @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
      $endgroup$
      – Melody
      5 hours ago








    • 2




      $begingroup$
      @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
      $endgroup$
      – Bill Dubuque
      4 hours ago


















    $begingroup$
    Is there an algorithmic way of solving these, rather than relying on intuition?
    $endgroup$
    – Junglemath
    5 hours ago




    $begingroup$
    Is there an algorithmic way of solving these, rather than relying on intuition?
    $endgroup$
    – Junglemath
    5 hours ago












    $begingroup$
    @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbb{Q}[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
    $endgroup$
    – Paolo
    5 hours ago






    $begingroup$
    @Junglemath By Euclidean algorithm you can find two polynomials $p(x), q(x) in mathbb{Q}[x]$ such that $p(x) x^4 + q(x) (x^2 + 1) = 1$.
    $endgroup$
    – Paolo
    5 hours ago






    2




    2




    $begingroup$
    @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbb{Q}[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
    $endgroup$
    – Melody
    5 hours ago






    $begingroup$
    @Junglemath The polynomials over a field form a Euclidean Domain, so yes, there is. If the gcd of $f_1,f_2inmathbb{Q}[x]$ is a unit, then you can perform the Euclidean Algorithm to find their gcd. Now, you can reverse the algorithm to write them as a linear combination of their gcd the same way you would for integers. I said not easy, because the process can be time consuming and very tedious.
    $endgroup$
    – Melody
    5 hours ago






    2




    2




    $begingroup$
    @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
    $endgroup$
    – Melody
    5 hours ago






    $begingroup$
    @Junglemath I didn't really convert it. I knew in advanced the single equation had a solution. This is because $x^4$ and $x^2+1$ have no common roots, hence no common irreducible factors. This means they are relatively prime, in which case we can write $1$ as a linear combination. Knowing that, I knew solving the single equation would give rise to a solution to the congruence equations. This is completely analogous to how you can solve everything over the integers.
    $endgroup$
    – Melody
    5 hours ago






    2




    2




    $begingroup$
    @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
    $endgroup$
    – Bill Dubuque
    4 hours ago






    $begingroup$
    @Junglemath I describe here at length this method of scaling the Bezout equation into a CRT solution.
    $endgroup$
    – Bill Dubuque
    4 hours ago













    2












    $begingroup$

    Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



    $ f-x,bmod, {x^{large 4}(x^{large 2}!+!1)}, =, x^{large 4}underbrace{{left[dfrac{color{#c00}f-x}{color{#0a0}{x^{large 4}}}bmod {x^{large 2}!+!1}right]}}_{large color{#0a0}{x^{Large 4}} equiv 1 {rm by} x^{Large 2} equiv -1 } =, x^{large 4}[1-x], $ by $,color{#c00}fequiv 1pmod{!x^{large 2}!+!1}$



    Remark $ $ Here are further examples done using MDL (an operational form of CRT).



    You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).






    share|cite|improve this answer











    $endgroup$


















      2












      $begingroup$

      Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



      $ f-x,bmod, {x^{large 4}(x^{large 2}!+!1)}, =, x^{large 4}underbrace{{left[dfrac{color{#c00}f-x}{color{#0a0}{x^{large 4}}}bmod {x^{large 2}!+!1}right]}}_{large color{#0a0}{x^{Large 4}} equiv 1 {rm by} x^{Large 2} equiv -1 } =, x^{large 4}[1-x], $ by $,color{#c00}fequiv 1pmod{!x^{large 2}!+!1}$



      Remark $ $ Here are further examples done using MDL (an operational form of CRT).



      You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).






      share|cite|improve this answer











      $endgroup$
















        2












        2








        2





        $begingroup$

        Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



        $ f-x,bmod, {x^{large 4}(x^{large 2}!+!1)}, =, x^{large 4}underbrace{{left[dfrac{color{#c00}f-x}{color{#0a0}{x^{large 4}}}bmod {x^{large 2}!+!1}right]}}_{large color{#0a0}{x^{Large 4}} equiv 1 {rm by} x^{Large 2} equiv -1 } =, x^{large 4}[1-x], $ by $,color{#c00}fequiv 1pmod{!x^{large 2}!+!1}$



        Remark $ $ Here are further examples done using MDL (an operational form of CRT).



        You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).






        share|cite|improve this answer











        $endgroup$



        Bu applying $ abbmod ac, =, a(bbmod c) $ [Mod Distributive Law] $ $ it is a bit simpler:



        $ f-x,bmod, {x^{large 4}(x^{large 2}!+!1)}, =, x^{large 4}underbrace{{left[dfrac{color{#c00}f-x}{color{#0a0}{x^{large 4}}}bmod {x^{large 2}!+!1}right]}}_{large color{#0a0}{x^{Large 4}} equiv 1 {rm by} x^{Large 2} equiv -1 } =, x^{large 4}[1-x], $ by $,color{#c00}fequiv 1pmod{!x^{large 2}!+!1}$



        Remark $ $ Here are further examples done using MDL (an operational form of CRT).



        You can find further details here on transforming the Bezout equation into a CRT solution (the method sketched in Melody's answer).







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 3 hours ago

























        answered 4 hours ago









        Bill DubuqueBill Dubuque

        214k29198660




        214k29198660






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196235%2fadapting-the-chinese-remainder-theorem-crt-for-integers-to-polynomials%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

            Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

            Ciclooctatetraenă Vezi și | Bibliografie | Meniu de navigare637866text4148569-500570979m