If the empty set is a subset of every set, why write … ∪ {∅}? The 2019 Stack Overflow...
How to delete random line from file using Unix command?
Wall plug outlet change
Change bounding box of math glyphs in LuaTeX
How many people can fit inside Mordenkainen's Magnificent Mansion?
Are my PIs rude or am I just being too sensitive?
Can a 1st-level character have an ability score above 18?
How can I protect witches in combat who wear limited clothing?
Was credit for the black hole image misattributed?
How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time
Does Parliament hold absolute power in the UK?
Difference between "generating set" and free product?
How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?
Problems with Ubuntu mount /tmp
Is there a writing software that you can sort scenes like slides in PowerPoint?
Does Parliament need to approve the new Brexit delay to 31 October 2019?
How can I define good in a religion that claims no moral authority?
Single author papers against my advisor's will?
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
Match Roman Numerals
Didn't get enough time to take a Coding Test - what to do now?
What was the last x86 CPU that did not have the x87 floating-point unit built in?
The variadic template constructor of my class cannot modify my class members, why is that so?
ELI5: Why do they say that Israel would have been the fourth country to land a spacecraft on the Moon and why do they call it low cost?
Derivation tree not rendering
If the empty set is a subset of every set, why write … ∪ {∅}?
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Is the void set (∅) a proper subset of every set?Direct proof of empty set being subset of every setIf the empty set is a subset of every set, why isn't ${emptyset,{a}}={{a}}$?Why "to every set and to every statement p(x), there exists {$xin A | p(x)$}?Should the empty set be included in this example?What subset am I missing from a set containing the empty set and a set with the empty set?Union on the empty set and the set containing the empty setWhy the empty set is a subset of every set?Question about the empty setUnderstanding empty set, set with empty set and set with set of empty set.
$begingroup$
I met the notation $ S={(a,b] ; a,bin mathbb R,a<b}cup{emptyset} $
I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S={(a,b] ; a,bin mathbb R,a<b}cup{emptyset} $ appear $color{red}{cup{emptyset}}$?
measure-theory elementary-set-theory
$endgroup$
add a comment |
$begingroup$
I met the notation $ S={(a,b] ; a,bin mathbb R,a<b}cup{emptyset} $
I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S={(a,b] ; a,bin mathbb R,a<b}cup{emptyset} $ appear $color{red}{cup{emptyset}}$?
measure-theory elementary-set-theory
$endgroup$
add a comment |
$begingroup$
I met the notation $ S={(a,b] ; a,bin mathbb R,a<b}cup{emptyset} $
I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S={(a,b] ; a,bin mathbb R,a<b}cup{emptyset} $ appear $color{red}{cup{emptyset}}$?
measure-theory elementary-set-theory
$endgroup$
I met the notation $ S={(a,b] ; a,bin mathbb R,a<b}cup{emptyset} $
I know $S$ is a family of subsets ,a set of intervals, and from set theory $emptyset$ is a subsets of every set then why in the notation :$ S={(a,b] ; a,bin mathbb R,a<b}cup{emptyset} $ appear $color{red}{cup{emptyset}}$?
measure-theory elementary-set-theory
measure-theory elementary-set-theory
edited 1 hour ago
LarsH
555624
555624
asked 8 hours ago
Ica SanduIca Sandu
1379
1379
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.
Or to be more clear it is ${1}neq{1,emptyset}$. The set on the left has one element, the set on the right has two elements, with $emptysetin{1,emptyset}$
$endgroup$
add a comment |
$begingroup$
Because the empty set $(emptyset)$ is one thing, but what you have there is ${emptyset}$, which is a different thing: it's a set with a single element (which happens to be the empty set).
$endgroup$
add a comment |
$begingroup$
The answer is: the given definition uses $cup{emptyset} $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.
$endgroup$
add a comment |
$begingroup$
It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using ${emptyset}$ is show you can write out the collection of all such subintervals in a nice form.
As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186480%2fif-the-empty-set-is-a-subset-of-every-set-why-write-%25e2%2588%25aa-%25e2%2588%2585%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.
Or to be more clear it is ${1}neq{1,emptyset}$. The set on the left has one element, the set on the right has two elements, with $emptysetin{1,emptyset}$
$endgroup$
add a comment |
$begingroup$
It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.
Or to be more clear it is ${1}neq{1,emptyset}$. The set on the left has one element, the set on the right has two elements, with $emptysetin{1,emptyset}$
$endgroup$
add a comment |
$begingroup$
It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.
Or to be more clear it is ${1}neq{1,emptyset}$. The set on the left has one element, the set on the right has two elements, with $emptysetin{1,emptyset}$
$endgroup$
It is because the emptyset $emptyset$ is a subset of every set, but not an element of every set.
It is $emptysetin S$ and you might want that to show, that the elements of $S$ define a topology.
Or to be more clear it is ${1}neq{1,emptyset}$. The set on the left has one element, the set on the right has two elements, with $emptysetin{1,emptyset}$
edited 6 hours ago
answered 8 hours ago
CornmanCornman
3,69321231
3,69321231
add a comment |
add a comment |
$begingroup$
Because the empty set $(emptyset)$ is one thing, but what you have there is ${emptyset}$, which is a different thing: it's a set with a single element (which happens to be the empty set).
$endgroup$
add a comment |
$begingroup$
Because the empty set $(emptyset)$ is one thing, but what you have there is ${emptyset}$, which is a different thing: it's a set with a single element (which happens to be the empty set).
$endgroup$
add a comment |
$begingroup$
Because the empty set $(emptyset)$ is one thing, but what you have there is ${emptyset}$, which is a different thing: it's a set with a single element (which happens to be the empty set).
$endgroup$
Because the empty set $(emptyset)$ is one thing, but what you have there is ${emptyset}$, which is a different thing: it's a set with a single element (which happens to be the empty set).
answered 8 hours ago
José Carlos SantosJosé Carlos Santos
174k23134243
174k23134243
add a comment |
add a comment |
$begingroup$
The answer is: the given definition uses $cup{emptyset} $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.
$endgroup$
add a comment |
$begingroup$
The answer is: the given definition uses $cup{emptyset} $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.
$endgroup$
add a comment |
$begingroup$
The answer is: the given definition uses $cup{emptyset} $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.
$endgroup$
The answer is: the given definition uses $cup{emptyset} $, not $cupemptyset $, so it adds the empty set as an element, not a subset of $S $.
edited 5 hours ago
answered 6 hours ago
CiaPanCiaPan
10.3k11248
10.3k11248
add a comment |
add a comment |
$begingroup$
It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using ${emptyset}$ is show you can write out the collection of all such subintervals in a nice form.
As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$
$endgroup$
add a comment |
$begingroup$
It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using ${emptyset}$ is show you can write out the collection of all such subintervals in a nice form.
As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$
$endgroup$
add a comment |
$begingroup$
It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using ${emptyset}$ is show you can write out the collection of all such subintervals in a nice form.
As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$
$endgroup$
It looks like $S$ is denoting subintervals of the real line that are open on the left and closed on the right with the convention that $emptyset$ is such a subinterval. In which case there is nothing to show, it's just a convention that $emptyset$ is a subinterval. The reason for using ${emptyset}$ is show you can write out the collection of all such subintervals in a nice form.
As for the empty set is a subset of every set, well that's a vacuous truth. For all $ainemptyset$ if $X$ is a set it follows that $ain X.$ This is true, because there are no $ainemptyset.$
answered 8 hours ago
MelodyMelody
1,21312
1,21312
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3186480%2fif-the-empty-set-is-a-subset-of-every-set-why-write-%25e2%2588%25aa-%25e2%2588%2585%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown