Calculate the limit without l'Hopital ruleHow to calculate limit without L'HopitalSolving limit without...
What is the source of "You can achieve a lot with hate, but even more with love" (Shakespeare?)
How clean are pets?
How to write characters doing illogical things in a believable way?
Extra initial Aeneid lines in 1662 M. de Marolles version
How to publish superseding results without creating enemies
Meaning of Swimming their horses
Expectation value of operators with non-zero Hamiltonian commutators
Permutations in Disguise
Can I travel to European countries with the Irish passport and without destination Visa?
Are there objective criteria for classifying consonance v. dissonance?
Why is this sentence grammatical?
Is it appropriate to CC a lot of people on an email
What does "boys rule, girls drool" mean?
Calculate the limit without l'Hopital rule
geschafft or geschaffen? which one is past participle of schaffen?
Why is the year in this ISO timestamp not 2019?
Statistical tests for benchmark comparison
Test to know when to use GLM over Linear Regression?
How to give my students a straightedge instead of a ruler
Can I see Harvest moon in India?
Bit one of the Intel 8080's Flags register
Unable to find solution to 6 simultaneous equations
How to make classical firearms effective on space habitats despite the coriolis effect?
Does a large scratch in an ND filter affect image quality?
Calculate the limit without l'Hopital rule
How to calculate limit without L'HopitalSolving limit without L'Hopitalwithout using l'hopital ruleSolving limit of radicals without L'Hopital $lim_{xto 64} frac{sqrt x - 8}{sqrt[3] x - 4} $Calculate limit without L'Hopital's ruleCalculate the limit without using L'Hopital's RuleSolving limit without L'Hopital ruleHow to calculate this limit without L'Hopital rule?Calculate the following limit without L'Hopital
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
$begingroup$
I have the following limit:
$$
lim_{xto 7}dfrac{x^2-4x-21}{x-4-sqrt{x+2}}
$$
I could easily calculate the limit = 12 using the l'Hopital rule.
Could you please suggest any other ways to solve this limit without using the l'Hopital rule?
Thank you
limits limits-without-lhopital
$endgroup$
add a comment
|
$begingroup$
I have the following limit:
$$
lim_{xto 7}dfrac{x^2-4x-21}{x-4-sqrt{x+2}}
$$
I could easily calculate the limit = 12 using the l'Hopital rule.
Could you please suggest any other ways to solve this limit without using the l'Hopital rule?
Thank you
limits limits-without-lhopital
$endgroup$
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
add a comment
|
$begingroup$
I have the following limit:
$$
lim_{xto 7}dfrac{x^2-4x-21}{x-4-sqrt{x+2}}
$$
I could easily calculate the limit = 12 using the l'Hopital rule.
Could you please suggest any other ways to solve this limit without using the l'Hopital rule?
Thank you
limits limits-without-lhopital
$endgroup$
I have the following limit:
$$
lim_{xto 7}dfrac{x^2-4x-21}{x-4-sqrt{x+2}}
$$
I could easily calculate the limit = 12 using the l'Hopital rule.
Could you please suggest any other ways to solve this limit without using the l'Hopital rule?
Thank you
limits limits-without-lhopital
limits limits-without-lhopital
asked 8 hours ago
Freshman42Freshman42
3401 silver badge14 bronze badges
3401 silver badge14 bronze badges
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
add a comment
|
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
1
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
add a comment
|
3 Answers
3
active
oldest
votes
$begingroup$
An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$
$endgroup$
add a comment
|
$begingroup$
$$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
=lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
=frac{10cdot6}{5}=12$$
since $(x-7)$ can be factored out of both of those quadratics.
$endgroup$
add a comment
|
$begingroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
$$
So your limit is
$$
lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
$$
$endgroup$
add a comment
|
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3356594%2fcalculate-the-limit-without-lhopital-rule%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$
$endgroup$
add a comment
|
$begingroup$
An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$
$endgroup$
add a comment
|
$begingroup$
An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$
$endgroup$
An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$
answered 8 hours ago
J.G.J.G.
47k2 gold badges42 silver badges62 bronze badges
47k2 gold badges42 silver badges62 bronze badges
add a comment
|
add a comment
|
$begingroup$
$$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
=lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
=frac{10cdot6}{5}=12$$
since $(x-7)$ can be factored out of both of those quadratics.
$endgroup$
add a comment
|
$begingroup$
$$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
=lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
=frac{10cdot6}{5}=12$$
since $(x-7)$ can be factored out of both of those quadratics.
$endgroup$
add a comment
|
$begingroup$
$$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
=lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
=frac{10cdot6}{5}=12$$
since $(x-7)$ can be factored out of both of those quadratics.
$endgroup$
$$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
=lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
=lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
=frac{10cdot6}{5}=12$$
since $(x-7)$ can be factored out of both of those quadratics.
answered 8 hours ago
Matthew DalyMatthew Daly
4,9721 gold badge7 silver badges27 bronze badges
4,9721 gold badge7 silver badges27 bronze badges
add a comment
|
add a comment
|
$begingroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
$$
So your limit is
$$
lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
$$
$endgroup$
add a comment
|
$begingroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
$$
So your limit is
$$
lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
$$
$endgroup$
add a comment
|
$begingroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
$$
So your limit is
$$
lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
$$
$endgroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
$$
So your limit is
$$
lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
$$
answered 8 hours ago
egregegreg
192k14 gold badges91 silver badges218 bronze badges
192k14 gold badges91 silver badges218 bronze badges
add a comment
|
add a comment
|
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3356594%2fcalculate-the-limit-without-lhopital-rule%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago