Calculate the limit without l'Hopital ruleHow to calculate limit without L'HopitalSolving limit without...

What is the source of "You can achieve a lot with hate, but even more with love" (Shakespeare?)

How clean are pets?

How to write characters doing illogical things in a believable way?

Extra initial Aeneid lines in 1662 M. de Marolles version

How to publish superseding results without creating enemies

Meaning of Swimming their horses

Expectation value of operators with non-zero Hamiltonian commutators

Permutations in Disguise

Can I travel to European countries with the Irish passport and without destination Visa?

Are there objective criteria for classifying consonance v. dissonance?

Why is this sentence grammatical?

Is it appropriate to CC a lot of people on an email

What does "boys rule, girls drool" mean?

Calculate the limit without l'Hopital rule

geschafft or geschaffen? which one is past participle of schaffen?

Why is the year in this ISO timestamp not 2019?

Statistical tests for benchmark comparison

Test to know when to use GLM over Linear Regression?

How to give my students a straightedge instead of a ruler

Can I see Harvest moon in India?

Bit one of the Intel 8080's Flags register

Unable to find solution to 6 simultaneous equations

How to make classical firearms effective on space habitats despite the coriolis effect?

Does a large scratch in an ND filter affect image quality?



Calculate the limit without l'Hopital rule


How to calculate limit without L'HopitalSolving limit without L'Hopitalwithout using l'hopital ruleSolving limit of radicals without L'Hopital $lim_{xto 64} frac{sqrt x - 8}{sqrt[3] x - 4} $Calculate limit without L'Hopital's ruleCalculate the limit without using L'Hopital's RuleSolving limit without L'Hopital ruleHow to calculate this limit without L'Hopital rule?Calculate the following limit without L'Hopital






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







3












$begingroup$


I have the following limit:



$$
lim_{xto 7}dfrac{x^2-4x-21}{x-4-sqrt{x+2}}
$$

I could easily calculate the limit = 12 using the l'Hopital rule.



Could you please suggest any other ways to solve this limit without using the l'Hopital rule?



Thank you










share|cite|improve this question









$endgroup$










  • 1




    $begingroup$
    @Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
    $endgroup$
    – Brian Moehring
    8 hours ago










  • $begingroup$
    @BrianMoehring: Thank you it works!
    $endgroup$
    – Freshman42
    8 hours ago


















3












$begingroup$


I have the following limit:



$$
lim_{xto 7}dfrac{x^2-4x-21}{x-4-sqrt{x+2}}
$$

I could easily calculate the limit = 12 using the l'Hopital rule.



Could you please suggest any other ways to solve this limit without using the l'Hopital rule?



Thank you










share|cite|improve this question









$endgroup$










  • 1




    $begingroup$
    @Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
    $endgroup$
    – Brian Moehring
    8 hours ago










  • $begingroup$
    @BrianMoehring: Thank you it works!
    $endgroup$
    – Freshman42
    8 hours ago














3












3








3





$begingroup$


I have the following limit:



$$
lim_{xto 7}dfrac{x^2-4x-21}{x-4-sqrt{x+2}}
$$

I could easily calculate the limit = 12 using the l'Hopital rule.



Could you please suggest any other ways to solve this limit without using the l'Hopital rule?



Thank you










share|cite|improve this question









$endgroup$




I have the following limit:



$$
lim_{xto 7}dfrac{x^2-4x-21}{x-4-sqrt{x+2}}
$$

I could easily calculate the limit = 12 using the l'Hopital rule.



Could you please suggest any other ways to solve this limit without using the l'Hopital rule?



Thank you







limits limits-without-lhopital






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 8 hours ago









Freshman42Freshman42

3401 silver badge14 bronze badges




3401 silver badge14 bronze badges











  • 1




    $begingroup$
    @Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
    $endgroup$
    – Brian Moehring
    8 hours ago










  • $begingroup$
    @BrianMoehring: Thank you it works!
    $endgroup$
    – Freshman42
    8 hours ago














  • 1




    $begingroup$
    @Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
    $endgroup$
    – Brian Moehring
    8 hours ago










  • $begingroup$
    @BrianMoehring: Thank you it works!
    $endgroup$
    – Freshman42
    8 hours ago








1




1




$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago




$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{(x-4-sqrt{x+2})(x-4+sqrt{x+2})} = frac{(x^2 - 4x - 21)(x-4+sqrt{x+2})}{x^2-9x+14}$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago












$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago




$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago










3 Answers
3






active

oldest

votes


















4














$begingroup$

An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$






share|cite|improve this answer









$endgroup$























    3














    $begingroup$

    $$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
    =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
    =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
    =lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
    =frac{10cdot6}{5}=12$$

    since $(x-7)$ can be factored out of both of those quadratics.






    share|cite|improve this answer









    $endgroup$























      1














      $begingroup$

      The numerator can be factored as $(x-7)(x+3)$. Now consider
      $$
      lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
      1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
      $$

      So your limit is
      $$
      lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
      $$






      share|cite|improve this answer









      $endgroup$


















        Your Answer








        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });















        draft saved

        draft discarded
















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3356594%2fcalculate-the-limit-without-lhopital-rule%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4














        $begingroup$

        An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$






        share|cite|improve this answer









        $endgroup$




















          4














          $begingroup$

          An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$






          share|cite|improve this answer









          $endgroup$


















            4














            4










            4







            $begingroup$

            An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$






            share|cite|improve this answer









            $endgroup$



            An alternative to @MatthewDaly's comment: write $y:=sqrt{x+2}$ so you want$$lim_{yto3}frac{y^4-8y^2-9}{y^2-y-6}=lim_{yto3}frac{y^3+3y^2+y+3}{y+2}=frac{3^3+3times 3^2+3+3}{5}=12.$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 8 hours ago









            J.G.J.G.

            47k2 gold badges42 silver badges62 bronze badges




            47k2 gold badges42 silver badges62 bronze badges




























                3














                $begingroup$

                $$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
                =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
                =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
                =lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
                =frac{10cdot6}{5}=12$$

                since $(x-7)$ can be factored out of both of those quadratics.






                share|cite|improve this answer









                $endgroup$




















                  3














                  $begingroup$

                  $$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
                  =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
                  =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
                  =lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
                  =frac{10cdot6}{5}=12$$

                  since $(x-7)$ can be factored out of both of those quadratics.






                  share|cite|improve this answer









                  $endgroup$


















                    3














                    3










                    3







                    $begingroup$

                    $$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
                    =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
                    =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
                    =lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
                    =frac{10cdot6}{5}=12$$

                    since $(x-7)$ can be factored out of both of those quadratics.






                    share|cite|improve this answer









                    $endgroup$



                    $$lim_{x→7}frac{x^2−4x−21}{x−4−sqrt{x+2}}cdotfrac{x−4+sqrt{x+2}}{x−4+sqrt{x+2}}\
                    =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{(x−4)^2−(x+2)}\
                    =lim_{x→7}frac{(x^2−4x−21)cdot(x−4+sqrt{x+2})}{x^2-9x+14}\
                    =lim_{x→7}frac{(x+3)cdot(x−4+sqrt{x+2})}{x-2}\
                    =frac{10cdot6}{5}=12$$

                    since $(x-7)$ can be factored out of both of those quadratics.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 8 hours ago









                    Matthew DalyMatthew Daly

                    4,9721 gold badge7 silver badges27 bronze badges




                    4,9721 gold badge7 silver badges27 bronze badges


























                        1














                        $begingroup$

                        The numerator can be factored as $(x-7)(x+3)$. Now consider
                        $$
                        lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
                        1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
                        $$

                        So your limit is
                        $$
                        lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
                        $$






                        share|cite|improve this answer









                        $endgroup$




















                          1














                          $begingroup$

                          The numerator can be factored as $(x-7)(x+3)$. Now consider
                          $$
                          lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
                          1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
                          $$

                          So your limit is
                          $$
                          lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
                          $$






                          share|cite|improve this answer









                          $endgroup$


















                            1














                            1










                            1







                            $begingroup$

                            The numerator can be factored as $(x-7)(x+3)$. Now consider
                            $$
                            lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
                            1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
                            $$

                            So your limit is
                            $$
                            lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
                            $$






                            share|cite|improve this answer









                            $endgroup$



                            The numerator can be factored as $(x-7)(x+3)$. Now consider
                            $$
                            lim_{xto7}frac{x-4-sqrt{x+2}}{x-7}=lim_{xto7}frac{x-7-(sqrt{x+2}-3)}{x-7}=
                            1-lim_{xto7}frac{x+2-9}{(x-7)(sqrt{x+2}+3)}=1-frac{1}{6}=frac{5}{6}
                            $$

                            So your limit is
                            $$
                            lim_{xto7}frac{x-7}{x-4-sqrt{x+2}}(x+3)=frac{6}{5}cdot10=12
                            $$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 8 hours ago









                            egregegreg

                            192k14 gold badges91 silver badges218 bronze badges




                            192k14 gold badges91 silver badges218 bronze badges


































                                draft saved

                                draft discarded



















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3356594%2fcalculate-the-limit-without-lhopital-rule%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

                                Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

                                Ciclooctatetraenă Vezi și | Bibliografie | Meniu de navigare637866text4148569-500570979m