Can you help me, to widen the page. Thank youHow can you change mathbb characters to the old version?Can you...
What does this Pokemon Trainer mean by saying the player is "SHELLOS"?
Making arrow with a gradual colour
Russian equivalents of 能骗就骗 (if you can cheat, then cheat)
Other homotopy invariants?
Bootstrap paradox with a time machine in iron
usage of y" not just for locations?
My players like to search everything. What do they find?
Why are examinees often not allowed to leave during the start and end of an exam?
Which high-degree derivatives play an essential role?
Is it advisable to inform the CEO about his brother accessing his office?
Available snapshots for main net?
Searching for single buildings in QGIS
Odd PCB Layout for Voltage Regulator
Sentences with no verb, but an ablative
What's the difference between the Find Steed and Find Greater Steed spells?
When does it become illegal to exchange bitcoin for cash?
Why is the saxophone not common in classical repertoire?
Are there advantages in writing by hand over typing out a story?
Tricky riddle from sister
Square wave to sawtooth wave using two BJT
How to know the operations made to calculate the Levenshtein distance between strings?
How to idiomatically express the idea "if you can cheat without being caught, do it"
GFCI versus circuit breaker
Why can't i use !(single pattern) in zsh even after i turn on kshglob?
Can you help me, to widen the page. Thank you
How can you change mathbb characters to the old version?Can you format these equations for me?How can I achieve multi-page theorems?Can anyone help me identifying this font?How do you change the border dimensions of tcolorboxtcolorbox: height fill in the middle of the pageNeed help in creating tcolorbox (like the one in manual)Can you help how to write this?Help lines only in the lower part with tcolorboxHow can i customise the breakable box
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
math-mode tcolorbox
New contributor
add a comment |
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
math-mode tcolorbox
New contributor
Welcome to TeX.SX! Could you please make your code compilable? How aredint
,dsum
defined?
– leandriis
8 hours ago
1
Welcome to tex.sx. A much better approach would be to break the overlong display. You are usingamsmath
, so themultline
environment would work. Just before the second equals sign, insert\
Details are in theamsmath
user guide,texdoc amsldoc
.
– barbara beeton
8 hours ago
Thank you , I'm bigginer in latex, can you please write what can i change.
– mustapha saadaoui
8 hours ago
add a comment |
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
math-mode tcolorbox
New contributor
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
math-mode tcolorbox
math-mode tcolorbox
New contributor
New contributor
edited 8 hours ago
M. Al Jumaily
1,6932 gold badges3 silver badges16 bronze badges
1,6932 gold badges3 silver badges16 bronze badges
New contributor
asked 8 hours ago
mustapha saadaouimustapha saadaoui
161 bronze badge
161 bronze badge
New contributor
New contributor
Welcome to TeX.SX! Could you please make your code compilable? How aredint
,dsum
defined?
– leandriis
8 hours ago
1
Welcome to tex.sx. A much better approach would be to break the overlong display. You are usingamsmath
, so themultline
environment would work. Just before the second equals sign, insert\
Details are in theamsmath
user guide,texdoc amsldoc
.
– barbara beeton
8 hours ago
Thank you , I'm bigginer in latex, can you please write what can i change.
– mustapha saadaoui
8 hours ago
add a comment |
Welcome to TeX.SX! Could you please make your code compilable? How aredint
,dsum
defined?
– leandriis
8 hours ago
1
Welcome to tex.sx. A much better approach would be to break the overlong display. You are usingamsmath
, so themultline
environment would work. Just before the second equals sign, insert\
Details are in theamsmath
user guide,texdoc amsldoc
.
– barbara beeton
8 hours ago
Thank you , I'm bigginer in latex, can you please write what can i change.
– mustapha saadaoui
8 hours ago
Welcome to TeX.SX! Could you please make your code compilable? How are
dint
, dsum
defined?– leandriis
8 hours ago
Welcome to TeX.SX! Could you please make your code compilable? How are
dint
, dsum
defined?– leandriis
8 hours ago
1
1
Welcome to tex.sx. A much better approach would be to break the overlong display. You are using
amsmath
, so the multline
environment would work. Just before the second equals sign, insert \
Details are in the amsmath
user guide, texdoc amsldoc
.– barbara beeton
8 hours ago
Welcome to tex.sx. A much better approach would be to break the overlong display. You are using
amsmath
, so the multline
environment would work. Just before the second equals sign, insert \
Details are in the amsmath
user guide, texdoc amsldoc
.– barbara beeton
8 hours ago
Thank you , I'm bigginer in latex, can you please write what can i change.
– mustapha saadaoui
8 hours ago
Thank you , I'm bigginer in latex, can you please write what can i change.
– mustapha saadaoui
8 hours ago
add a comment |
6 Answers
6
active
oldest
votes
For example you can use environment split
to divide the long equation at the =
signs like (see the added code marked with <======
):
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
In your code are several errors I ignore because we do not know how you defined the related commands like dint
. If you add the definitions to your question I can update my answer.
Please see the following MWE
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
and its result:
add a comment |
You might be interested in the package layout.
The package defines a command layout
, which will draw nice pictures showing a summary of the layout of the current document.
Beware in mind:
You don't need this package for setting/adjusting margins.
But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.
A few remarks about horizontal adjustments:
Usually hoffset
and voffset
are 0
and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.
The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:
1in+hoffset
+oddsidemargin
.
The left margin for left-hand-pages of two-side-documents is:
1in+hoffset
+evensidemargin
.
You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.
With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.
Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.
If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength
and addtolength
will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by ..
instead.
You can do something like this:
documentclass[a4paper]{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
%usepackage{lipsum}
usepackage{layout}
setlength{oddsidemargin}{2.5cm}%
setlength{evensidemargin}{oddsidemargin}%
begingroupmakeatletter@firstofone{%
endgroup
if@twoside
setlength{oddsidemargin}{.5oddsidemargin}%
fi
}%
setlength{textwidth}{paperwidth}%
addtolength{textwidth}{-oddsidemargin}%
addtolength{textwidth}{-evensidemargin}%
setlength{marginparwidth}{.625evensidemargin}%
setlength{marginparsep}{.15evensidemargin}%
addtolength{oddsidemargin}{-1in}%
addtolength{evensidemargin}{-1in}%
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%defdint{mathop{displaystyle int}}%
%defdsum{mathop{displaystyle sum }}%
begin{document}
layoutnewpage
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
add a comment |
If you want to globally decrease the marigins you might want to use the geometry
package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate
list using the enumitem
package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum
and dint
given in the question, I just used sum
and int
respectively):
documentclass[draft]{article}
usepackage{geometry}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=16mm, %<-----------
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
newcommand{dint}{int}
newcommand{dsum}{sum}
usepackage{enumitem}
setlist[enumerate]{leftmargin=4pt} %<-----------
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
Thank you very match
– mustapha saadaoui
8 hours ago
add a comment |
Use the align*
environment instead:
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{align*}
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
end{align*}
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
add a comment |
I believe you shouldn't want to widen the textblock. Instad, do learn about the align*
environment -- used in the example below -- of the amsmath
package. In addition, you shouldn't rely on left
and right
as much. For the document at hand, none of the left
and right
instances are needed.
Also, do make a habit of writing dsum_{n=0}^{infty}
instead of overset{n}{underset{k,=,0}{dsum }}
.
documentclass{article}
usepackage{amsmath, amssymb}
allowdisplaybreaks
usepackage[many]{tcolorbox}
usepackage{lipsum}
usepackage[T1]{fontenc} % to allow direct writing of "é"
usepackage[french]{babel} % obey various French typographic criteria
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%% Two new commands:
providecommanddsum{displaystylesum}
providecommanddint{displaystyleint}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$.
Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.
En déduire les sommes
$dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.
Indication: On pourra utiliser que
[
frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
frac{(-1) ^{n+1}u^{n+1}}{1+u},.
]
item Calculer
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.
item On pose, pour $alpha >0$,
$R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.
Montrer que:
begin{align*}
R_{n}(alpha)
&=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
&=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
end{align*}
Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
(-1) ^{n+1}}{2(n+1) alpha +2}.$
item Etudier la nature de la série
$dsum R_{n}(alpha)$.
end{enumerate}
end{exo}
end{document}
you can change dfrac by displaystylefrac and dsum by displaystylesum
– mustapha saadaoui
8 hours ago
@mustaphasaadaoui - Theamsmath
package provides a definition fordfrac
; hence, no need to define this instruction again.
– Mico
7 hours ago
add a comment |
I would suggest splitting one equation instead, and removing the many unnecessary left right
pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem
, mathtools
and nccmath
.
documentclass[french]{article}
usepackage[utf8]{inputenc}
usepackage[T1]{fontenc}
usepackage{babel}
usepackage{mathtools, nccmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{enumitem}
usepackage{lipsum}
newcommand{dint}{displaystyleint}
newcommand{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}[wide=0pt, leftmargin=*]
item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
En déduire les sommes
begin{equation*}
sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser que useshortskip
[ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]
item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.
item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
begin{align*}
R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
& =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
}{( 1+t^{alpha }) ^{2}},dt
end{align*}%
Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$
item Étudier la nature de la série $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "85"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f498110%2fcan-you-help-me-to-widen-the-page-thank-you%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
For example you can use environment split
to divide the long equation at the =
signs like (see the added code marked with <======
):
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
In your code are several errors I ignore because we do not know how you defined the related commands like dint
. If you add the definitions to your question I can update my answer.
Please see the following MWE
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
and its result:
add a comment |
For example you can use environment split
to divide the long equation at the =
signs like (see the added code marked with <======
):
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
In your code are several errors I ignore because we do not know how you defined the related commands like dint
. If you add the definitions to your question I can update my answer.
Please see the following MWE
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
and its result:
add a comment |
For example you can use environment split
to divide the long equation at the =
signs like (see the added code marked with <======
):
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
In your code are several errors I ignore because we do not know how you defined the related commands like dint
. If you add the definitions to your question I can update my answer.
Please see the following MWE
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
and its result:
For example you can use environment split
to divide the long equation at the =
signs like (see the added code marked with <======
):
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
In your code are several errors I ignore because we do not know how you defined the related commands like dint
. If you add the definitions to your question I can update my answer.
Please see the following MWE
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
and its result:
answered 8 hours ago
KurtKurt
45.3k10 gold badges50 silver badges174 bronze badges
45.3k10 gold badges50 silver badges174 bronze badges
add a comment |
add a comment |
You might be interested in the package layout.
The package defines a command layout
, which will draw nice pictures showing a summary of the layout of the current document.
Beware in mind:
You don't need this package for setting/adjusting margins.
But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.
A few remarks about horizontal adjustments:
Usually hoffset
and voffset
are 0
and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.
The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:
1in+hoffset
+oddsidemargin
.
The left margin for left-hand-pages of two-side-documents is:
1in+hoffset
+evensidemargin
.
You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.
With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.
Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.
If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength
and addtolength
will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by ..
instead.
You can do something like this:
documentclass[a4paper]{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
%usepackage{lipsum}
usepackage{layout}
setlength{oddsidemargin}{2.5cm}%
setlength{evensidemargin}{oddsidemargin}%
begingroupmakeatletter@firstofone{%
endgroup
if@twoside
setlength{oddsidemargin}{.5oddsidemargin}%
fi
}%
setlength{textwidth}{paperwidth}%
addtolength{textwidth}{-oddsidemargin}%
addtolength{textwidth}{-evensidemargin}%
setlength{marginparwidth}{.625evensidemargin}%
setlength{marginparsep}{.15evensidemargin}%
addtolength{oddsidemargin}{-1in}%
addtolength{evensidemargin}{-1in}%
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%defdint{mathop{displaystyle int}}%
%defdsum{mathop{displaystyle sum }}%
begin{document}
layoutnewpage
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
add a comment |
You might be interested in the package layout.
The package defines a command layout
, which will draw nice pictures showing a summary of the layout of the current document.
Beware in mind:
You don't need this package for setting/adjusting margins.
But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.
A few remarks about horizontal adjustments:
Usually hoffset
and voffset
are 0
and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.
The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:
1in+hoffset
+oddsidemargin
.
The left margin for left-hand-pages of two-side-documents is:
1in+hoffset
+evensidemargin
.
You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.
With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.
Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.
If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength
and addtolength
will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by ..
instead.
You can do something like this:
documentclass[a4paper]{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
%usepackage{lipsum}
usepackage{layout}
setlength{oddsidemargin}{2.5cm}%
setlength{evensidemargin}{oddsidemargin}%
begingroupmakeatletter@firstofone{%
endgroup
if@twoside
setlength{oddsidemargin}{.5oddsidemargin}%
fi
}%
setlength{textwidth}{paperwidth}%
addtolength{textwidth}{-oddsidemargin}%
addtolength{textwidth}{-evensidemargin}%
setlength{marginparwidth}{.625evensidemargin}%
setlength{marginparsep}{.15evensidemargin}%
addtolength{oddsidemargin}{-1in}%
addtolength{evensidemargin}{-1in}%
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%defdint{mathop{displaystyle int}}%
%defdsum{mathop{displaystyle sum }}%
begin{document}
layoutnewpage
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
add a comment |
You might be interested in the package layout.
The package defines a command layout
, which will draw nice pictures showing a summary of the layout of the current document.
Beware in mind:
You don't need this package for setting/adjusting margins.
But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.
A few remarks about horizontal adjustments:
Usually hoffset
and voffset
are 0
and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.
The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:
1in+hoffset
+oddsidemargin
.
The left margin for left-hand-pages of two-side-documents is:
1in+hoffset
+evensidemargin
.
You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.
With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.
Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.
If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength
and addtolength
will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by ..
instead.
You can do something like this:
documentclass[a4paper]{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
%usepackage{lipsum}
usepackage{layout}
setlength{oddsidemargin}{2.5cm}%
setlength{evensidemargin}{oddsidemargin}%
begingroupmakeatletter@firstofone{%
endgroup
if@twoside
setlength{oddsidemargin}{.5oddsidemargin}%
fi
}%
setlength{textwidth}{paperwidth}%
addtolength{textwidth}{-oddsidemargin}%
addtolength{textwidth}{-evensidemargin}%
setlength{marginparwidth}{.625evensidemargin}%
setlength{marginparsep}{.15evensidemargin}%
addtolength{oddsidemargin}{-1in}%
addtolength{evensidemargin}{-1in}%
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%defdint{mathop{displaystyle int}}%
%defdsum{mathop{displaystyle sum }}%
begin{document}
layoutnewpage
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
You might be interested in the package layout.
The package defines a command layout
, which will draw nice pictures showing a summary of the layout of the current document.
Beware in mind:
You don't need this package for setting/adjusting margins.
But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.
A few remarks about horizontal adjustments:
Usually hoffset
and voffset
are 0
and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.
The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:
1in+hoffset
+oddsidemargin
.
The left margin for left-hand-pages of two-side-documents is:
1in+hoffset
+evensidemargin
.
You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.
With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.
Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.
If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength
and addtolength
will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by ..
instead.
You can do something like this:
documentclass[a4paper]{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
%usepackage{lipsum}
usepackage{layout}
setlength{oddsidemargin}{2.5cm}%
setlength{evensidemargin}{oddsidemargin}%
begingroupmakeatletter@firstofone{%
endgroup
if@twoside
setlength{oddsidemargin}{.5oddsidemargin}%
fi
}%
setlength{textwidth}{paperwidth}%
addtolength{textwidth}{-oddsidemargin}%
addtolength{textwidth}{-evensidemargin}%
setlength{marginparwidth}{.625evensidemargin}%
setlength{marginparsep}{.15evensidemargin}%
addtolength{oddsidemargin}{-1in}%
addtolength{evensidemargin}{-1in}%
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%defdint{mathop{displaystyle int}}%
%defdsum{mathop{displaystyle sum }}%
begin{document}
layoutnewpage
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
edited 7 hours ago
answered 7 hours ago
Ulrich DiezUlrich Diez
6,4026 silver badges22 bronze badges
6,4026 silver badges22 bronze badges
add a comment |
add a comment |
If you want to globally decrease the marigins you might want to use the geometry
package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate
list using the enumitem
package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum
and dint
given in the question, I just used sum
and int
respectively):
documentclass[draft]{article}
usepackage{geometry}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=16mm, %<-----------
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
newcommand{dint}{int}
newcommand{dsum}{sum}
usepackage{enumitem}
setlist[enumerate]{leftmargin=4pt} %<-----------
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
Thank you very match
– mustapha saadaoui
8 hours ago
add a comment |
If you want to globally decrease the marigins you might want to use the geometry
package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate
list using the enumitem
package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum
and dint
given in the question, I just used sum
and int
respectively):
documentclass[draft]{article}
usepackage{geometry}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=16mm, %<-----------
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
newcommand{dint}{int}
newcommand{dsum}{sum}
usepackage{enumitem}
setlist[enumerate]{leftmargin=4pt} %<-----------
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
Thank you very match
– mustapha saadaoui
8 hours ago
add a comment |
If you want to globally decrease the marigins you might want to use the geometry
package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate
list using the enumitem
package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum
and dint
given in the question, I just used sum
and int
respectively):
documentclass[draft]{article}
usepackage{geometry}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=16mm, %<-----------
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
newcommand{dint}{int}
newcommand{dsum}{sum}
usepackage{enumitem}
setlist[enumerate]{leftmargin=4pt} %<-----------
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
If you want to globally decrease the marigins you might want to use the geometry
package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate
list using the enumitem
package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum
and dint
given in the question, I just used sum
and int
respectively):
documentclass[draft]{article}
usepackage{geometry}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=16mm, %<-----------
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
newcommand{dint}{int}
newcommand{dsum}{sum}
usepackage{enumitem}
setlist[enumerate]{leftmargin=4pt} %<-----------
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
answered 8 hours ago
leandriisleandriis
15.2k1 gold badge11 silver badges36 bronze badges
15.2k1 gold badge11 silver badges36 bronze badges
Thank you very match
– mustapha saadaoui
8 hours ago
add a comment |
Thank you very match
– mustapha saadaoui
8 hours ago
Thank you very match
– mustapha saadaoui
8 hours ago
Thank you very match
– mustapha saadaoui
8 hours ago
add a comment |
Use the align*
environment instead:
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{align*}
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
end{align*}
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
add a comment |
Use the align*
environment instead:
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{align*}
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
end{align*}
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
add a comment |
Use the align*
environment instead:
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{align*}
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
end{align*}
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
Use the align*
environment instead:
documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$
item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$
item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{align*}
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
end{align*}
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$
item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
answered 8 hours ago
M. Al JumailyM. Al Jumaily
1,6932 gold badges3 silver badges16 bronze badges
1,6932 gold badges3 silver badges16 bronze badges
add a comment |
add a comment |
I believe you shouldn't want to widen the textblock. Instad, do learn about the align*
environment -- used in the example below -- of the amsmath
package. In addition, you shouldn't rely on left
and right
as much. For the document at hand, none of the left
and right
instances are needed.
Also, do make a habit of writing dsum_{n=0}^{infty}
instead of overset{n}{underset{k,=,0}{dsum }}
.
documentclass{article}
usepackage{amsmath, amssymb}
allowdisplaybreaks
usepackage[many]{tcolorbox}
usepackage{lipsum}
usepackage[T1]{fontenc} % to allow direct writing of "é"
usepackage[french]{babel} % obey various French typographic criteria
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%% Two new commands:
providecommanddsum{displaystylesum}
providecommanddint{displaystyleint}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$.
Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.
En déduire les sommes
$dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.
Indication: On pourra utiliser que
[
frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
frac{(-1) ^{n+1}u^{n+1}}{1+u},.
]
item Calculer
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.
item On pose, pour $alpha >0$,
$R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.
Montrer que:
begin{align*}
R_{n}(alpha)
&=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
&=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
end{align*}
Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
(-1) ^{n+1}}{2(n+1) alpha +2}.$
item Etudier la nature de la série
$dsum R_{n}(alpha)$.
end{enumerate}
end{exo}
end{document}
you can change dfrac by displaystylefrac and dsum by displaystylesum
– mustapha saadaoui
8 hours ago
@mustaphasaadaoui - Theamsmath
package provides a definition fordfrac
; hence, no need to define this instruction again.
– Mico
7 hours ago
add a comment |
I believe you shouldn't want to widen the textblock. Instad, do learn about the align*
environment -- used in the example below -- of the amsmath
package. In addition, you shouldn't rely on left
and right
as much. For the document at hand, none of the left
and right
instances are needed.
Also, do make a habit of writing dsum_{n=0}^{infty}
instead of overset{n}{underset{k,=,0}{dsum }}
.
documentclass{article}
usepackage{amsmath, amssymb}
allowdisplaybreaks
usepackage[many]{tcolorbox}
usepackage{lipsum}
usepackage[T1]{fontenc} % to allow direct writing of "é"
usepackage[french]{babel} % obey various French typographic criteria
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%% Two new commands:
providecommanddsum{displaystylesum}
providecommanddint{displaystyleint}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$.
Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.
En déduire les sommes
$dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.
Indication: On pourra utiliser que
[
frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
frac{(-1) ^{n+1}u^{n+1}}{1+u},.
]
item Calculer
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.
item On pose, pour $alpha >0$,
$R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.
Montrer que:
begin{align*}
R_{n}(alpha)
&=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
&=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
end{align*}
Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
(-1) ^{n+1}}{2(n+1) alpha +2}.$
item Etudier la nature de la série
$dsum R_{n}(alpha)$.
end{enumerate}
end{exo}
end{document}
you can change dfrac by displaystylefrac and dsum by displaystylesum
– mustapha saadaoui
8 hours ago
@mustaphasaadaoui - Theamsmath
package provides a definition fordfrac
; hence, no need to define this instruction again.
– Mico
7 hours ago
add a comment |
I believe you shouldn't want to widen the textblock. Instad, do learn about the align*
environment -- used in the example below -- of the amsmath
package. In addition, you shouldn't rely on left
and right
as much. For the document at hand, none of the left
and right
instances are needed.
Also, do make a habit of writing dsum_{n=0}^{infty}
instead of overset{n}{underset{k,=,0}{dsum }}
.
documentclass{article}
usepackage{amsmath, amssymb}
allowdisplaybreaks
usepackage[many]{tcolorbox}
usepackage{lipsum}
usepackage[T1]{fontenc} % to allow direct writing of "é"
usepackage[french]{babel} % obey various French typographic criteria
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%% Two new commands:
providecommanddsum{displaystylesum}
providecommanddint{displaystyleint}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$.
Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.
En déduire les sommes
$dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.
Indication: On pourra utiliser que
[
frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
frac{(-1) ^{n+1}u^{n+1}}{1+u},.
]
item Calculer
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.
item On pose, pour $alpha >0$,
$R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.
Montrer que:
begin{align*}
R_{n}(alpha)
&=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
&=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
end{align*}
Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
(-1) ^{n+1}}{2(n+1) alpha +2}.$
item Etudier la nature de la série
$dsum R_{n}(alpha)$.
end{enumerate}
end{exo}
end{document}
I believe you shouldn't want to widen the textblock. Instad, do learn about the align*
environment -- used in the example below -- of the amsmath
package. In addition, you shouldn't rely on left
and right
as much. For the document at hand, none of the left
and right
instances are needed.
Also, do make a habit of writing dsum_{n=0}^{infty}
instead of overset{n}{underset{k,=,0}{dsum }}
.
documentclass{article}
usepackage{amsmath, amssymb}
allowdisplaybreaks
usepackage[many]{tcolorbox}
usepackage{lipsum}
usepackage[T1]{fontenc} % to allow direct writing of "é"
usepackage[french]{babel} % obey various French typographic criteria
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
%% Two new commands:
providecommanddsum{displaystylesum}
providecommanddint{displaystyleint}
begin{document}
begin{exo}
begin{enumerate}
item Soit $alpha >0$.
Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.
En déduire les sommes
$dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.
Indication: On pourra utiliser que
[
frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
frac{(-1) ^{n+1}u^{n+1}}{1+u},.
]
item Calculer
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
$dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.
item On pose, pour $alpha >0$,
$R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.
Montrer que:
begin{align*}
R_{n}(alpha)
&=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
&=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
end{align*}
Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
(-1) ^{n+1}}{2(n+1) alpha +2}.$
item Etudier la nature de la série
$dsum R_{n}(alpha)$.
end{enumerate}
end{exo}
end{document}
answered 8 hours ago
MicoMico
295k32 gold badges410 silver badges807 bronze badges
295k32 gold badges410 silver badges807 bronze badges
you can change dfrac by displaystylefrac and dsum by displaystylesum
– mustapha saadaoui
8 hours ago
@mustaphasaadaoui - Theamsmath
package provides a definition fordfrac
; hence, no need to define this instruction again.
– Mico
7 hours ago
add a comment |
you can change dfrac by displaystylefrac and dsum by displaystylesum
– mustapha saadaoui
8 hours ago
@mustaphasaadaoui - Theamsmath
package provides a definition fordfrac
; hence, no need to define this instruction again.
– Mico
7 hours ago
you can change dfrac by displaystylefrac and dsum by displaystylesum
– mustapha saadaoui
8 hours ago
you can change dfrac by displaystylefrac and dsum by displaystylesum
– mustapha saadaoui
8 hours ago
@mustaphasaadaoui - The
amsmath
package provides a definition for dfrac
; hence, no need to define this instruction again.– Mico
7 hours ago
@mustaphasaadaoui - The
amsmath
package provides a definition for dfrac
; hence, no need to define this instruction again.– Mico
7 hours ago
add a comment |
I would suggest splitting one equation instead, and removing the many unnecessary left right
pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem
, mathtools
and nccmath
.
documentclass[french]{article}
usepackage[utf8]{inputenc}
usepackage[T1]{fontenc}
usepackage{babel}
usepackage{mathtools, nccmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{enumitem}
usepackage{lipsum}
newcommand{dint}{displaystyleint}
newcommand{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}[wide=0pt, leftmargin=*]
item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
En déduire les sommes
begin{equation*}
sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser que useshortskip
[ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]
item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.
item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
begin{align*}
R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
& =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
}{( 1+t^{alpha }) ^{2}},dt
end{align*}%
Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$
item Étudier la nature de la série $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
add a comment |
I would suggest splitting one equation instead, and removing the many unnecessary left right
pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem
, mathtools
and nccmath
.
documentclass[french]{article}
usepackage[utf8]{inputenc}
usepackage[T1]{fontenc}
usepackage{babel}
usepackage{mathtools, nccmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{enumitem}
usepackage{lipsum}
newcommand{dint}{displaystyleint}
newcommand{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}[wide=0pt, leftmargin=*]
item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
En déduire les sommes
begin{equation*}
sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser que useshortskip
[ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]
item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.
item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
begin{align*}
R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
& =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
}{( 1+t^{alpha }) ^{2}},dt
end{align*}%
Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$
item Étudier la nature de la série $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
add a comment |
I would suggest splitting one equation instead, and removing the many unnecessary left right
pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem
, mathtools
and nccmath
.
documentclass[french]{article}
usepackage[utf8]{inputenc}
usepackage[T1]{fontenc}
usepackage{babel}
usepackage{mathtools, nccmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{enumitem}
usepackage{lipsum}
newcommand{dint}{displaystyleint}
newcommand{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}[wide=0pt, leftmargin=*]
item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
En déduire les sommes
begin{equation*}
sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser que useshortskip
[ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]
item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.
item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
begin{align*}
R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
& =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
}{( 1+t^{alpha }) ^{2}},dt
end{align*}%
Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$
item Étudier la nature de la série $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
I would suggest splitting one equation instead, and removing the many unnecessary left right
pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem
, mathtools
and nccmath
.
documentclass[french]{article}
usepackage[utf8]{inputenc}
usepackage[T1]{fontenc}
usepackage{babel}
usepackage{mathtools, nccmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{enumitem}
usepackage{lipsum}
newcommand{dint}{displaystyleint}
newcommand{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}
newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}
begin{document}
begin{exo}
begin{enumerate}[wide=0pt, leftmargin=*]
item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
En déduire les sommes
begin{equation*}
sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser que useshortskip
[ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]
item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.
item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
begin{align*}
R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
& =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
}{( 1+t^{alpha }) ^{2}},dt
end{align*}%
Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$
item Étudier la nature de la série $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}
answered 8 hours ago
BernardBernard
183k7 gold badges83 silver badges216 bronze badges
183k7 gold badges83 silver badges216 bronze badges
add a comment |
add a comment |
mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.
mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.
mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.
mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f498110%2fcan-you-help-me-to-widen-the-page-thank-you%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Welcome to TeX.SX! Could you please make your code compilable? How are
dint
,dsum
defined?– leandriis
8 hours ago
1
Welcome to tex.sx. A much better approach would be to break the overlong display. You are using
amsmath
, so themultline
environment would work. Just before the second equals sign, insert\
Details are in theamsmath
user guide,texdoc amsldoc
.– barbara beeton
8 hours ago
Thank you , I'm bigginer in latex, can you please write what can i change.
– mustapha saadaoui
8 hours ago