Can you help me, to widen the page. Thank youHow can you change mathbb characters to the old version?Can you...

What does this Pokemon Trainer mean by saying the player is "SHELLOS"?

Making arrow with a gradual colour

Russian equivalents of 能骗就骗 (if you can cheat, then cheat)

Other homotopy invariants?

Bootstrap paradox with a time machine in iron

usage of y" not just for locations?

My players like to search everything. What do they find?

Why are examinees often not allowed to leave during the start and end of an exam?

Which high-degree derivatives play an essential role?

Is it advisable to inform the CEO about his brother accessing his office?

Available snapshots for main net?

Searching for single buildings in QGIS

Odd PCB Layout for Voltage Regulator

Sentences with no verb, but an ablative

What's the difference between the Find Steed and Find Greater Steed spells?

When does it become illegal to exchange bitcoin for cash?

Why is the saxophone not common in classical repertoire?

Are there advantages in writing by hand over typing out a story?

Tricky riddle from sister

Square wave to sawtooth wave using two BJT

How to know the operations made to calculate the Levenshtein distance between strings?

How to idiomatically express the idea "if you can cheat without being caught, do it"

GFCI versus circuit breaker

Why can't i use !(single pattern) in zsh even after i turn on kshglob?



Can you help me, to widen the page. Thank you


How can you change mathbb characters to the old version?Can you format these equations for me?How can I achieve multi-page theorems?Can anyone help me identifying this font?How do you change the border dimensions of tcolorboxtcolorbox: height fill in the middle of the pageNeed help in creating tcolorbox (like the one in manual)Can you help how to write this?Help lines only in the lower part with tcolorboxHow can i customise the breakable box













3















documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}

newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}


begin{document}

begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$

item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}


enter image description here










share|improve this question









New contributor



mustapha saadaoui is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Welcome to TeX.SX! Could you please make your code compilable? How are dint, dsum defined?

    – leandriis
    8 hours ago








  • 1





    Welcome to tex.sx. A much better approach would be to break the overlong display. You are using amsmath, so the multline environment would work. Just before the second equals sign, insert \ Details are in the amsmath user guide, texdoc amsldoc.

    – barbara beeton
    8 hours ago













  • Thank you , I'm bigginer in latex, can you please write what can i change.

    – mustapha saadaoui
    8 hours ago


















3















documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}

newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}


begin{document}

begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$

item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}


enter image description here










share|improve this question









New contributor



mustapha saadaoui is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Welcome to TeX.SX! Could you please make your code compilable? How are dint, dsum defined?

    – leandriis
    8 hours ago








  • 1





    Welcome to tex.sx. A much better approach would be to break the overlong display. You are using amsmath, so the multline environment would work. Just before the second equals sign, insert \ Details are in the amsmath user guide, texdoc amsldoc.

    – barbara beeton
    8 hours ago













  • Thank you , I'm bigginer in latex, can you please write what can i change.

    – mustapha saadaoui
    8 hours ago
















3












3








3








documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}

newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}


begin{document}

begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$

item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}


enter image description here










share|improve this question









New contributor



mustapha saadaoui is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











documentclass{article}
usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}
DeclareMathOperator{dint}{displaystyleint}
DeclareMathOperator{dsum}{displaystylesum}
definecolor{myblue}{RGB}{0,163,243}

newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}


begin{document}

begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$

item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}


enter image description here







math-mode tcolorbox






share|improve this question









New contributor



mustapha saadaoui is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share|improve this question









New contributor



mustapha saadaoui is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|improve this question




share|improve this question








edited 8 hours ago









M. Al Jumaily

1,6932 gold badges3 silver badges16 bronze badges




1,6932 gold badges3 silver badges16 bronze badges






New contributor



mustapha saadaoui is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








asked 8 hours ago









mustapha saadaouimustapha saadaoui

161 bronze badge




161 bronze badge




New contributor



mustapha saadaoui is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




mustapha saadaoui is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.















  • Welcome to TeX.SX! Could you please make your code compilable? How are dint, dsum defined?

    – leandriis
    8 hours ago








  • 1





    Welcome to tex.sx. A much better approach would be to break the overlong display. You are using amsmath, so the multline environment would work. Just before the second equals sign, insert \ Details are in the amsmath user guide, texdoc amsldoc.

    – barbara beeton
    8 hours ago













  • Thank you , I'm bigginer in latex, can you please write what can i change.

    – mustapha saadaoui
    8 hours ago





















  • Welcome to TeX.SX! Could you please make your code compilable? How are dint, dsum defined?

    – leandriis
    8 hours ago








  • 1





    Welcome to tex.sx. A much better approach would be to break the overlong display. You are using amsmath, so the multline environment would work. Just before the second equals sign, insert \ Details are in the amsmath user guide, texdoc amsldoc.

    – barbara beeton
    8 hours ago













  • Thank you , I'm bigginer in latex, can you please write what can i change.

    – mustapha saadaoui
    8 hours ago



















Welcome to TeX.SX! Could you please make your code compilable? How are dint, dsum defined?

– leandriis
8 hours ago







Welcome to TeX.SX! Could you please make your code compilable? How are dint, dsum defined?

– leandriis
8 hours ago






1




1





Welcome to tex.sx. A much better approach would be to break the overlong display. You are using amsmath, so the multline environment would work. Just before the second equals sign, insert \ Details are in the amsmath user guide, texdoc amsldoc.

– barbara beeton
8 hours ago







Welcome to tex.sx. A much better approach would be to break the overlong display. You are using amsmath, so the multline environment would work. Just before the second equals sign, insert \ Details are in the amsmath user guide, texdoc amsldoc.

– barbara beeton
8 hours ago















Thank you , I'm bigginer in latex, can you please write what can i change.

– mustapha saadaoui
8 hours ago







Thank you , I'm bigginer in latex, can you please write what can i change.

– mustapha saadaoui
8 hours ago












6 Answers
6






active

oldest

votes


















2














For example you can use environment split to divide the long equation at the = signs like (see the added code marked with <======):



begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%


In your code are several errors I ignore because we do not know how you defined the related commands like dint. If you add the definitions to your question I can update my answer.



Please see the following MWE



documentclass{article}

usepackage{amsmath, amssymb}
usepackage[many]{tcolorbox}
usepackage{lipsum}

definecolor{myblue}{RGB}{0,163,243}

newtcolorbox[auto counter,number within=section]{exo}[1][]{
enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
fonttitle=bfseriessffamily,
sharp corners,
detach title,
leftrule=18mm,
underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
breakable,pad at break=1mm,
#1,
code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
}


begin{document}

begin{exo}
begin{enumerate}
item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
En d'{e}duire les sommes
begin{equation*}
overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
+infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
end{equation*}%
Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
-1right) ^{n+1}u^{n+1}}{1+u}$

item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
+infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
que :%
begin{equation*}
begin{split} % <=======================================================
R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
&=dfrac{left( -1right) % <===========================================
^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
}{left( 1+t^{alpha }right) ^{2}}dt
end{split} % <=========================================================
end{equation*}%
Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
end{enumerate}
end{exo}
end{document}


and its result:



enter image description here






share|improve this answer































    2














    You might be interested in the package layout.



    The pack­age de­fines a com­mand lay­out, which will draw nice pictures showing a sum­mary of the lay­out of the cur­rent doc­u­ment.



    Beware in mind:

    You don't need this package for setting/adjusting margins.

    But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.



    A few remarks about horizontal adjustments:



    Usually hoffset and voffset are 0 and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.



    The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:

    1in+hoffset+oddsidemargin.



    The left margin for left-hand-pages of two-side-documents is:

    1in+hoffset+evensidemargin.



    You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.



    With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.



    Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.



    If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength and addtolength will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by .. instead.



    You can do something like this:



    documentclass[a4paper]{article}
    usepackage{amsmath, amssymb}
    usepackage[many]{tcolorbox}
    %usepackage{lipsum}
    usepackage{layout}

    setlength{oddsidemargin}{2.5cm}%
    setlength{evensidemargin}{oddsidemargin}%
    begingroupmakeatletter@firstofone{%
    endgroup
    if@twoside
    setlength{oddsidemargin}{.5oddsidemargin}%
    fi
    }%
    setlength{textwidth}{paperwidth}%
    addtolength{textwidth}{-oddsidemargin}%
    addtolength{textwidth}{-evensidemargin}%
    setlength{marginparwidth}{.625evensidemargin}%
    setlength{marginparsep}{.15evensidemargin}%
    addtolength{oddsidemargin}{-1in}%
    addtolength{evensidemargin}{-1in}%

    definecolor{myblue}{RGB}{0,163,243}

    newtcolorbox[auto counter,number within=section]{exo}[1][]{
    enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
    fonttitle=bfseriessffamily,
    sharp corners,
    detach title,
    leftrule=18mm,
    underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
    at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
    breakable,pad at break=1mm,
    #1,
    code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
    }

    %defdint{mathop{displaystyle int}}%
    %defdsum{mathop{displaystyle sum }}%

    begin{document}

    layoutnewpage

    begin{exo}
    begin{enumerate}
    item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
    overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
    En d'{e}duire les sommes
    begin{equation*}
    overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
    +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
    end{equation*}%
    Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
    underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
    -1right) ^{n+1}u^{n+1}}{1+u}$

    item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
    1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

    item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
    +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
    que :%
    begin{equation*}
    R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
    t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
    ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
    left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
    }{left( 1+t^{alpha }right) ^{2}}dt
    end{equation*}%
    Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
    left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

    item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
    end{enumerate}
    end{exo}
    end{document}


    enter image description here



    enter image description here






    share|improve this answer

































      1














      If you want to globally decrease the marigins you might want to use the geometry package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate list using the enumitem package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum and dint given in the question, I just used sum and intrespectively):



      enter image description here



      documentclass[draft]{article}
      usepackage{geometry}
      usepackage{amsmath, amssymb}
      usepackage[many]{tcolorbox}
      usepackage{lipsum}
      definecolor{myblue}{RGB}{0,163,243}

      newtcolorbox[auto counter,number within=section]{exo}[1][]{
      enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
      fonttitle=bfseriessffamily,
      sharp corners,
      detach title,
      leftrule=16mm, %<-----------
      underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
      at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
      breakable,pad at break=1mm,
      #1,
      code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
      }


      newcommand{dint}{int}
      newcommand{dsum}{sum}

      usepackage{enumitem}
      setlist[enumerate]{leftmargin=4pt} %<-----------

      begin{document}

      begin{exo}
      begin{enumerate}
      item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
      overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
      En d'{e}duire les sommes
      begin{equation*}
      overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
      +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
      end{equation*}%
      Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
      underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
      -1right) ^{n+1}u^{n+1}}{1+u}$

      item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
      1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

      item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
      +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
      que :%
      begin{equation*}
      R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
      t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
      ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
      left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
      }{left( 1+t^{alpha }right) ^{2}}dt
      end{equation*}%
      Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
      left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

      item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
      end{enumerate}
      end{exo}
      end{document}





      share|improve this answer
























      • Thank you very match

        – mustapha saadaoui
        8 hours ago



















      1














      Use the align* environment instead:



      Output



      documentclass{article}
      usepackage{amsmath, amssymb}
      usepackage[many]{tcolorbox}
      usepackage{lipsum}
      DeclareMathOperator{dint}{displaystyleint}
      DeclareMathOperator{dsum}{displaystylesum}
      definecolor{myblue}{RGB}{0,163,243}

      newtcolorbox[auto counter,number within=section]{exo}[1][]{
      enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
      fonttitle=bfseriessffamily,
      sharp corners,
      detach title,
      leftrule=18mm,
      underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
      at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
      breakable,pad at break=1mm,
      #1,
      code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
      }


      begin{document}

      begin{exo}
      begin{enumerate}
      item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
      overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
      En d'{e}duire les sommes
      begin{equation*}
      overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
      +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
      end{equation*}%

      Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
      underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
      -1right) ^{n+1}u^{n+1}}{1+u}$

      item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
      1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

      item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
      +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
      que :%
      begin{align*}
      R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
      ~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
      left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
      end{align*}
      Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
      left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

      item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
      end{enumerate}
      end{exo}
      end{document}





      share|improve this answer































        1














        I believe you shouldn't want to widen the textblock. Instad, do learn about the align* environment -- used in the example below -- of the amsmath package. In addition, you shouldn't rely on left and right as much. For the document at hand, none of the left and right instances are needed.



        Also, do make a habit of writing dsum_{n=0}^{infty} instead of overset{n}{underset{k,=,0}{dsum }}.



        enter image description here



        documentclass{article}
        usepackage{amsmath, amssymb}
        allowdisplaybreaks
        usepackage[many]{tcolorbox}
        usepackage{lipsum}
        usepackage[T1]{fontenc} % to allow direct writing of "é"
        usepackage[french]{babel} % obey various French typographic criteria

        definecolor{myblue}{RGB}{0,163,243}
        newtcolorbox[auto counter,number within=section]{exo}[1][]{
        enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
        fonttitle=bfseriessffamily,
        sharp corners,
        detach title,
        leftrule=18mm,
        underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
        at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
        breakable,pad at break=1mm,
        #1,
        code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
        }

        %% Two new commands:
        providecommanddsum{displaystylesum}
        providecommanddint{displaystyleint}

        begin{document}

        begin{exo}
        begin{enumerate}
        item Soit $alpha >0$.
        Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
        dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.

        En déduire les sommes
        $dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
        $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.

        Indication: On pourra utiliser que
        [
        frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
        frac{(-1) ^{n+1}u^{n+1}}{1+u},.
        ]

        item Calculer
        $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
        $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.

        item On pose, pour $alpha >0$,
        $R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.

        Montrer que:
        begin{align*}
        R_{n}(alpha)
        &=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
        &=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
        dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
        int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
        end{align*}
        Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
        (-1) ^{n+1}}{2(n+1) alpha +2}.$

        item Etudier la nature de la série
        $dsum R_{n}(alpha)$.
        end{enumerate}
        end{exo}
        end{document}





        share|improve this answer
























        • you can change dfrac by displaystylefrac and dsum by displaystylesum

          – mustapha saadaoui
          8 hours ago











        • @mustaphasaadaoui - The amsmath package provides a definition for dfrac; hence, no need to define this instruction again.

          – Mico
          7 hours ago



















        1














        I would suggest splitting one equation instead, and removing the many unnecessary left right pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem, mathtools and nccmath.



        documentclass[french]{article}
        usepackage[utf8]{inputenc}
        usepackage[T1]{fontenc}
        usepackage{babel}
        usepackage{mathtools, nccmath, amssymb}
        usepackage[many]{tcolorbox}
        usepackage{enumitem}
        usepackage{lipsum}
        newcommand{dint}{displaystyleint}
        newcommand{dsum}{displaystylesum}
        definecolor{myblue}{RGB}{0,163,243}

        newtcolorbox[auto counter,number within=section]{exo}[1][]{
        enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
        fonttitle=bfseriessffamily,
        sharp corners,
        detach title,
        leftrule=18mm,
        underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
        at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
        breakable,pad at break=1mm,
        #1,
        code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
        }


        begin{document}

        begin{exo}
        begin{enumerate}[wide=0pt, leftmargin=*]
        item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
        dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
        En déduire les sommes
        begin{equation*}
        sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
        +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
        end{equation*}%
        Indication : On pourra utiliser que useshortskip
        [ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]

        item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.

        item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
        begin{align*}
        R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
        t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
        & =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
        ( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
        }{( 1+t^{alpha }) ^{2}},dt
        end{align*}%
        Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$

        item Étudier la nature de la série $sum R_{n}left( alpha right) .$
        end{enumerate}
        end{exo}

        end{document}


        enter image description here






        share|improve this answer


























          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "85"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.










          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f498110%2fcan-you-help-me-to-widen-the-page-thank-you%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          6 Answers
          6






          active

          oldest

          votes








          6 Answers
          6






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2














          For example you can use environment split to divide the long equation at the = signs like (see the added code marked with <======):



          begin{equation*}
          begin{split} % <=======================================================
          R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
          t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
          &=dfrac{left( -1right) % <===========================================
          ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
          left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
          }{left( 1+t^{alpha }right) ^{2}}dt
          end{split} % <=========================================================
          end{equation*}%


          In your code are several errors I ignore because we do not know how you defined the related commands like dint. If you add the definitions to your question I can update my answer.



          Please see the following MWE



          documentclass{article}

          usepackage{amsmath, amssymb}
          usepackage[many]{tcolorbox}
          usepackage{lipsum}

          definecolor{myblue}{RGB}{0,163,243}

          newtcolorbox[auto counter,number within=section]{exo}[1][]{
          enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
          fonttitle=bfseriessffamily,
          sharp corners,
          detach title,
          leftrule=18mm,
          underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
          at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
          breakable,pad at break=1mm,
          #1,
          code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
          }


          begin{document}

          begin{exo}
          begin{enumerate}
          item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
          overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
          En d'{e}duire les sommes
          begin{equation*}
          overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
          +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
          end{equation*}%
          Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
          underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
          -1right) ^{n+1}u^{n+1}}{1+u}$

          item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
          1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

          item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
          +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
          que :%
          begin{equation*}
          begin{split} % <=======================================================
          R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
          t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
          &=dfrac{left( -1right) % <===========================================
          ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
          left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
          }{left( 1+t^{alpha }right) ^{2}}dt
          end{split} % <=========================================================
          end{equation*}%
          Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
          left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

          item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
          end{enumerate}
          end{exo}
          end{document}


          and its result:



          enter image description here






          share|improve this answer




























            2














            For example you can use environment split to divide the long equation at the = signs like (see the added code marked with <======):



            begin{equation*}
            begin{split} % <=======================================================
            R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
            t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
            &=dfrac{left( -1right) % <===========================================
            ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
            left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
            }{left( 1+t^{alpha }right) ^{2}}dt
            end{split} % <=========================================================
            end{equation*}%


            In your code are several errors I ignore because we do not know how you defined the related commands like dint. If you add the definitions to your question I can update my answer.



            Please see the following MWE



            documentclass{article}

            usepackage{amsmath, amssymb}
            usepackage[many]{tcolorbox}
            usepackage{lipsum}

            definecolor{myblue}{RGB}{0,163,243}

            newtcolorbox[auto counter,number within=section]{exo}[1][]{
            enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
            fonttitle=bfseriessffamily,
            sharp corners,
            detach title,
            leftrule=18mm,
            underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
            at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
            breakable,pad at break=1mm,
            #1,
            code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
            }


            begin{document}

            begin{exo}
            begin{enumerate}
            item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
            overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
            En d'{e}duire les sommes
            begin{equation*}
            overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
            +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
            end{equation*}%
            Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
            underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
            -1right) ^{n+1}u^{n+1}}{1+u}$

            item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
            1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

            item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
            +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
            que :%
            begin{equation*}
            begin{split} % <=======================================================
            R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
            t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
            &=dfrac{left( -1right) % <===========================================
            ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
            left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
            }{left( 1+t^{alpha }right) ^{2}}dt
            end{split} % <=========================================================
            end{equation*}%
            Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
            left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

            item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
            end{enumerate}
            end{exo}
            end{document}


            and its result:



            enter image description here






            share|improve this answer


























              2












              2








              2







              For example you can use environment split to divide the long equation at the = signs like (see the added code marked with <======):



              begin{equation*}
              begin{split} % <=======================================================
              R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
              t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
              &=dfrac{left( -1right) % <===========================================
              ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
              left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
              }{left( 1+t^{alpha }right) ^{2}}dt
              end{split} % <=========================================================
              end{equation*}%


              In your code are several errors I ignore because we do not know how you defined the related commands like dint. If you add the definitions to your question I can update my answer.



              Please see the following MWE



              documentclass{article}

              usepackage{amsmath, amssymb}
              usepackage[many]{tcolorbox}
              usepackage{lipsum}

              definecolor{myblue}{RGB}{0,163,243}

              newtcolorbox[auto counter,number within=section]{exo}[1][]{
              enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
              fonttitle=bfseriessffamily,
              sharp corners,
              detach title,
              leftrule=18mm,
              underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
              at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
              breakable,pad at break=1mm,
              #1,
              code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
              }


              begin{document}

              begin{exo}
              begin{enumerate}
              item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
              overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
              En d'{e}duire les sommes
              begin{equation*}
              overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
              +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
              end{equation*}%
              Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
              underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
              -1right) ^{n+1}u^{n+1}}{1+u}$

              item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
              1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

              item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
              +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
              que :%
              begin{equation*}
              begin{split} % <=======================================================
              R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
              t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
              &=dfrac{left( -1right) % <===========================================
              ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
              left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
              }{left( 1+t^{alpha }right) ^{2}}dt
              end{split} % <=========================================================
              end{equation*}%
              Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
              left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

              item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
              end{enumerate}
              end{exo}
              end{document}


              and its result:



              enter image description here






              share|improve this answer













              For example you can use environment split to divide the long equation at the = signs like (see the added code marked with <======):



              begin{equation*}
              begin{split} % <=======================================================
              R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
              t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
              &=dfrac{left( -1right) % <===========================================
              ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
              left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
              }{left( 1+t^{alpha }right) ^{2}}dt
              end{split} % <=========================================================
              end{equation*}%


              In your code are several errors I ignore because we do not know how you defined the related commands like dint. If you add the definitions to your question I can update my answer.



              Please see the following MWE



              documentclass{article}

              usepackage{amsmath, amssymb}
              usepackage[many]{tcolorbox}
              usepackage{lipsum}

              definecolor{myblue}{RGB}{0,163,243}

              newtcolorbox[auto counter,number within=section]{exo}[1][]{
              enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
              fonttitle=bfseriessffamily,
              sharp corners,
              detach title,
              leftrule=18mm,
              underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
              at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
              breakable,pad at break=1mm,
              #1,
              code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
              }


              begin{document}

              begin{exo}
              begin{enumerate}
              item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
              overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
              En d'{e}duire les sommes
              begin{equation*}
              overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
              +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
              end{equation*}%
              Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
              underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
              -1right) ^{n+1}u^{n+1}}{1+u}$

              item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
              1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

              item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
              +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
              que :%
              begin{equation*}
              begin{split} % <=======================================================
              R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{% <========================
              t^{left( n+1right) alpha }}{1+t^{alpha }}dt \ % <==================
              &=dfrac{left( -1right) % <===========================================
              ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
              left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
              }{left( 1+t^{alpha }right) ^{2}}dt
              end{split} % <=========================================================
              end{equation*}%
              Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
              left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

              item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
              end{enumerate}
              end{exo}
              end{document}


              and its result:



              enter image description here







              share|improve this answer












              share|improve this answer



              share|improve this answer










              answered 8 hours ago









              KurtKurt

              45.3k10 gold badges50 silver badges174 bronze badges




              45.3k10 gold badges50 silver badges174 bronze badges























                  2














                  You might be interested in the package layout.



                  The pack­age de­fines a com­mand lay­out, which will draw nice pictures showing a sum­mary of the lay­out of the cur­rent doc­u­ment.



                  Beware in mind:

                  You don't need this package for setting/adjusting margins.

                  But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.



                  A few remarks about horizontal adjustments:



                  Usually hoffset and voffset are 0 and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.



                  The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:

                  1in+hoffset+oddsidemargin.



                  The left margin for left-hand-pages of two-side-documents is:

                  1in+hoffset+evensidemargin.



                  You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.



                  With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.



                  Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.



                  If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength and addtolength will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by .. instead.



                  You can do something like this:



                  documentclass[a4paper]{article}
                  usepackage{amsmath, amssymb}
                  usepackage[many]{tcolorbox}
                  %usepackage{lipsum}
                  usepackage{layout}

                  setlength{oddsidemargin}{2.5cm}%
                  setlength{evensidemargin}{oddsidemargin}%
                  begingroupmakeatletter@firstofone{%
                  endgroup
                  if@twoside
                  setlength{oddsidemargin}{.5oddsidemargin}%
                  fi
                  }%
                  setlength{textwidth}{paperwidth}%
                  addtolength{textwidth}{-oddsidemargin}%
                  addtolength{textwidth}{-evensidemargin}%
                  setlength{marginparwidth}{.625evensidemargin}%
                  setlength{marginparsep}{.15evensidemargin}%
                  addtolength{oddsidemargin}{-1in}%
                  addtolength{evensidemargin}{-1in}%

                  definecolor{myblue}{RGB}{0,163,243}

                  newtcolorbox[auto counter,number within=section]{exo}[1][]{
                  enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                  fonttitle=bfseriessffamily,
                  sharp corners,
                  detach title,
                  leftrule=18mm,
                  underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                  at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                  breakable,pad at break=1mm,
                  #1,
                  code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                  }

                  %defdint{mathop{displaystyle int}}%
                  %defdsum{mathop{displaystyle sum }}%

                  begin{document}

                  layoutnewpage

                  begin{exo}
                  begin{enumerate}
                  item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                  overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                  En d'{e}duire les sommes
                  begin{equation*}
                  overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
                  +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                  end{equation*}%
                  Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                  underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                  -1right) ^{n+1}u^{n+1}}{1+u}$

                  item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                  1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                  item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                  +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                  que :%
                  begin{equation*}
                  R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
                  t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
                  ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
                  left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
                  }{left( 1+t^{alpha }right) ^{2}}dt
                  end{equation*}%
                  Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                  left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                  item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                  end{enumerate}
                  end{exo}
                  end{document}


                  enter image description here



                  enter image description here






                  share|improve this answer






























                    2














                    You might be interested in the package layout.



                    The pack­age de­fines a com­mand lay­out, which will draw nice pictures showing a sum­mary of the lay­out of the cur­rent doc­u­ment.



                    Beware in mind:

                    You don't need this package for setting/adjusting margins.

                    But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.



                    A few remarks about horizontal adjustments:



                    Usually hoffset and voffset are 0 and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.



                    The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:

                    1in+hoffset+oddsidemargin.



                    The left margin for left-hand-pages of two-side-documents is:

                    1in+hoffset+evensidemargin.



                    You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.



                    With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.



                    Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.



                    If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength and addtolength will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by .. instead.



                    You can do something like this:



                    documentclass[a4paper]{article}
                    usepackage{amsmath, amssymb}
                    usepackage[many]{tcolorbox}
                    %usepackage{lipsum}
                    usepackage{layout}

                    setlength{oddsidemargin}{2.5cm}%
                    setlength{evensidemargin}{oddsidemargin}%
                    begingroupmakeatletter@firstofone{%
                    endgroup
                    if@twoside
                    setlength{oddsidemargin}{.5oddsidemargin}%
                    fi
                    }%
                    setlength{textwidth}{paperwidth}%
                    addtolength{textwidth}{-oddsidemargin}%
                    addtolength{textwidth}{-evensidemargin}%
                    setlength{marginparwidth}{.625evensidemargin}%
                    setlength{marginparsep}{.15evensidemargin}%
                    addtolength{oddsidemargin}{-1in}%
                    addtolength{evensidemargin}{-1in}%

                    definecolor{myblue}{RGB}{0,163,243}

                    newtcolorbox[auto counter,number within=section]{exo}[1][]{
                    enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                    fonttitle=bfseriessffamily,
                    sharp corners,
                    detach title,
                    leftrule=18mm,
                    underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                    at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                    breakable,pad at break=1mm,
                    #1,
                    code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                    }

                    %defdint{mathop{displaystyle int}}%
                    %defdsum{mathop{displaystyle sum }}%

                    begin{document}

                    layoutnewpage

                    begin{exo}
                    begin{enumerate}
                    item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                    overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                    En d'{e}duire les sommes
                    begin{equation*}
                    overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
                    +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                    end{equation*}%
                    Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                    underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                    -1right) ^{n+1}u^{n+1}}{1+u}$

                    item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                    1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                    item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                    +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                    que :%
                    begin{equation*}
                    R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
                    t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
                    ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
                    left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
                    }{left( 1+t^{alpha }right) ^{2}}dt
                    end{equation*}%
                    Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                    left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                    item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                    end{enumerate}
                    end{exo}
                    end{document}


                    enter image description here



                    enter image description here






                    share|improve this answer




























                      2












                      2








                      2







                      You might be interested in the package layout.



                      The pack­age de­fines a com­mand lay­out, which will draw nice pictures showing a sum­mary of the lay­out of the cur­rent doc­u­ment.



                      Beware in mind:

                      You don't need this package for setting/adjusting margins.

                      But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.



                      A few remarks about horizontal adjustments:



                      Usually hoffset and voffset are 0 and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.



                      The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:

                      1in+hoffset+oddsidemargin.



                      The left margin for left-hand-pages of two-side-documents is:

                      1in+hoffset+evensidemargin.



                      You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.



                      With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.



                      Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.



                      If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength and addtolength will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by .. instead.



                      You can do something like this:



                      documentclass[a4paper]{article}
                      usepackage{amsmath, amssymb}
                      usepackage[many]{tcolorbox}
                      %usepackage{lipsum}
                      usepackage{layout}

                      setlength{oddsidemargin}{2.5cm}%
                      setlength{evensidemargin}{oddsidemargin}%
                      begingroupmakeatletter@firstofone{%
                      endgroup
                      if@twoside
                      setlength{oddsidemargin}{.5oddsidemargin}%
                      fi
                      }%
                      setlength{textwidth}{paperwidth}%
                      addtolength{textwidth}{-oddsidemargin}%
                      addtolength{textwidth}{-evensidemargin}%
                      setlength{marginparwidth}{.625evensidemargin}%
                      setlength{marginparsep}{.15evensidemargin}%
                      addtolength{oddsidemargin}{-1in}%
                      addtolength{evensidemargin}{-1in}%

                      definecolor{myblue}{RGB}{0,163,243}

                      newtcolorbox[auto counter,number within=section]{exo}[1][]{
                      enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                      fonttitle=bfseriessffamily,
                      sharp corners,
                      detach title,
                      leftrule=18mm,
                      underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                      at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                      breakable,pad at break=1mm,
                      #1,
                      code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                      }

                      %defdint{mathop{displaystyle int}}%
                      %defdsum{mathop{displaystyle sum }}%

                      begin{document}

                      layoutnewpage

                      begin{exo}
                      begin{enumerate}
                      item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                      overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                      En d'{e}duire les sommes
                      begin{equation*}
                      overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
                      +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                      end{equation*}%
                      Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                      underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                      -1right) ^{n+1}u^{n+1}}{1+u}$

                      item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                      1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                      item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                      +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                      que :%
                      begin{equation*}
                      R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
                      t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
                      ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
                      left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
                      }{left( 1+t^{alpha }right) ^{2}}dt
                      end{equation*}%
                      Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                      left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                      item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                      end{enumerate}
                      end{exo}
                      end{document}


                      enter image description here



                      enter image description here






                      share|improve this answer















                      You might be interested in the package layout.



                      The pack­age de­fines a com­mand lay­out, which will draw nice pictures showing a sum­mary of the lay­out of the cur­rent doc­u­ment.



                      Beware in mind:

                      You don't need this package for setting/adjusting margins.

                      But it is useful for getting a visual impression of how the layout of the current document is formed due to setting values for the various layout parameters of the standard document classes.



                      A few remarks about horizontal adjustments:



                      Usually hoffset and voffset are 0 and these values should not be changed as these are intended for horizontally and vertically shifting pages in case this is needed for compensating undesired horizontal and vertical shiftings done by some printing devices.



                      The left margin both for all pages of one-side-documents and for right-hand-pages of two-side-documents is:

                      1in+hoffset+oddsidemargin.



                      The left margin for left-hand-pages of two-side-documents is:

                      1in+hoffset+evensidemargin.



                      You cannot/do not need to specify right margins as they are specified indirectly by specifying left margins and the width of the text and the width of the paper.



                      With two-side-documents the outer margin of a page shall usually be twice as wide as the inner margin of that page.



                      Thus with two-side-documents the left margin of right hand pages shall usually be half as wide as the left margin of left hand pages.



                      If you wish to change/adjust margins for single pages only, you can do this by making sure that the material which forms the previous page is shipped out and then placing the material for the pages with changed/adjusted margins into a local scope on its own wherein as first thing the page layout parameters are set in terms of non-global assignments and wherein as last thing it is ensured that the material that shall form these pages is shipped out. I mentioned that you need to do that in terms of non-global assignments because LaTeX's setlength and addtolength will perform global assignments. In such situationy you can, e.g., use plain-TeX's advance .. by .. instead.



                      You can do something like this:



                      documentclass[a4paper]{article}
                      usepackage{amsmath, amssymb}
                      usepackage[many]{tcolorbox}
                      %usepackage{lipsum}
                      usepackage{layout}

                      setlength{oddsidemargin}{2.5cm}%
                      setlength{evensidemargin}{oddsidemargin}%
                      begingroupmakeatletter@firstofone{%
                      endgroup
                      if@twoside
                      setlength{oddsidemargin}{.5oddsidemargin}%
                      fi
                      }%
                      setlength{textwidth}{paperwidth}%
                      addtolength{textwidth}{-oddsidemargin}%
                      addtolength{textwidth}{-evensidemargin}%
                      setlength{marginparwidth}{.625evensidemargin}%
                      setlength{marginparsep}{.15evensidemargin}%
                      addtolength{oddsidemargin}{-1in}%
                      addtolength{evensidemargin}{-1in}%

                      definecolor{myblue}{RGB}{0,163,243}

                      newtcolorbox[auto counter,number within=section]{exo}[1][]{
                      enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                      fonttitle=bfseriessffamily,
                      sharp corners,
                      detach title,
                      leftrule=18mm,
                      underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                      at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                      breakable,pad at break=1mm,
                      #1,
                      code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                      }

                      %defdint{mathop{displaystyle int}}%
                      %defdsum{mathop{displaystyle sum }}%

                      begin{document}

                      layoutnewpage

                      begin{exo}
                      begin{enumerate}
                      item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                      overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                      En d'{e}duire les sommes
                      begin{equation*}
                      overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
                      +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                      end{equation*}%
                      Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                      underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                      -1right) ^{n+1}u^{n+1}}{1+u}$

                      item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                      1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                      item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                      +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                      que :%
                      begin{equation*}
                      R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
                      t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
                      ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
                      left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
                      }{left( 1+t^{alpha }right) ^{2}}dt
                      end{equation*}%
                      Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                      left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                      item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                      end{enumerate}
                      end{exo}
                      end{document}


                      enter image description here



                      enter image description here







                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited 7 hours ago

























                      answered 7 hours ago









                      Ulrich DiezUlrich Diez

                      6,4026 silver badges22 bronze badges




                      6,4026 silver badges22 bronze badges























                          1














                          If you want to globally decrease the marigins you might want to use the geometry package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate list using the enumitem package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum and dint given in the question, I just used sum and intrespectively):



                          enter image description here



                          documentclass[draft]{article}
                          usepackage{geometry}
                          usepackage{amsmath, amssymb}
                          usepackage[many]{tcolorbox}
                          usepackage{lipsum}
                          definecolor{myblue}{RGB}{0,163,243}

                          newtcolorbox[auto counter,number within=section]{exo}[1][]{
                          enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                          fonttitle=bfseriessffamily,
                          sharp corners,
                          detach title,
                          leftrule=16mm, %<-----------
                          underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                          at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
                          breakable,pad at break=1mm,
                          #1,
                          code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                          }


                          newcommand{dint}{int}
                          newcommand{dsum}{sum}

                          usepackage{enumitem}
                          setlist[enumerate]{leftmargin=4pt} %<-----------

                          begin{document}

                          begin{exo}
                          begin{enumerate}
                          item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                          overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                          En d'{e}duire les sommes
                          begin{equation*}
                          overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
                          +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                          end{equation*}%
                          Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                          underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                          -1right) ^{n+1}u^{n+1}}{1+u}$

                          item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                          1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                          item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                          +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                          que :%
                          begin{equation*}
                          R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
                          t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
                          ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
                          left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
                          }{left( 1+t^{alpha }right) ^{2}}dt
                          end{equation*}%
                          Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                          left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                          item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                          end{enumerate}
                          end{exo}
                          end{document}





                          share|improve this answer
























                          • Thank you very match

                            – mustapha saadaoui
                            8 hours ago
















                          1














                          If you want to globally decrease the marigins you might want to use the geometry package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate list using the enumitem package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum and dint given in the question, I just used sum and intrespectively):



                          enter image description here



                          documentclass[draft]{article}
                          usepackage{geometry}
                          usepackage{amsmath, amssymb}
                          usepackage[many]{tcolorbox}
                          usepackage{lipsum}
                          definecolor{myblue}{RGB}{0,163,243}

                          newtcolorbox[auto counter,number within=section]{exo}[1][]{
                          enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                          fonttitle=bfseriessffamily,
                          sharp corners,
                          detach title,
                          leftrule=16mm, %<-----------
                          underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                          at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
                          breakable,pad at break=1mm,
                          #1,
                          code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                          }


                          newcommand{dint}{int}
                          newcommand{dsum}{sum}

                          usepackage{enumitem}
                          setlist[enumerate]{leftmargin=4pt} %<-----------

                          begin{document}

                          begin{exo}
                          begin{enumerate}
                          item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                          overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                          En d'{e}duire les sommes
                          begin{equation*}
                          overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
                          +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                          end{equation*}%
                          Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                          underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                          -1right) ^{n+1}u^{n+1}}{1+u}$

                          item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                          1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                          item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                          +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                          que :%
                          begin{equation*}
                          R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
                          t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
                          ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
                          left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
                          }{left( 1+t^{alpha }right) ^{2}}dt
                          end{equation*}%
                          Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                          left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                          item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                          end{enumerate}
                          end{exo}
                          end{document}





                          share|improve this answer
























                          • Thank you very match

                            – mustapha saadaoui
                            8 hours ago














                          1












                          1








                          1







                          If you want to globally decrease the marigins you might want to use the geometry package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate list using the enumitem package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum and dint given in the question, I just used sum and intrespectively):



                          enter image description here



                          documentclass[draft]{article}
                          usepackage{geometry}
                          usepackage{amsmath, amssymb}
                          usepackage[many]{tcolorbox}
                          usepackage{lipsum}
                          definecolor{myblue}{RGB}{0,163,243}

                          newtcolorbox[auto counter,number within=section]{exo}[1][]{
                          enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                          fonttitle=bfseriessffamily,
                          sharp corners,
                          detach title,
                          leftrule=16mm, %<-----------
                          underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                          at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
                          breakable,pad at break=1mm,
                          #1,
                          code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                          }


                          newcommand{dint}{int}
                          newcommand{dsum}{sum}

                          usepackage{enumitem}
                          setlist[enumerate]{leftmargin=4pt} %<-----------

                          begin{document}

                          begin{exo}
                          begin{enumerate}
                          item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                          overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                          En d'{e}duire les sommes
                          begin{equation*}
                          overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
                          +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                          end{equation*}%
                          Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                          underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                          -1right) ^{n+1}u^{n+1}}{1+u}$

                          item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                          1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                          item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                          +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                          que :%
                          begin{equation*}
                          R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
                          t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
                          ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
                          left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
                          }{left( 1+t^{alpha }right) ^{2}}dt
                          end{equation*}%
                          Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                          left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                          item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                          end{enumerate}
                          end{exo}
                          end{document}





                          share|improve this answer













                          If you want to globally decrease the marigins you might want to use the geometry package. If you then slightly change the width of the left blue bar and adjsut the indentation of the items in the enumerate list using the enumitem package, the equation can fit into the textwidth without splitting it into two lines. (Since there was no definition for dsum and dint given in the question, I just used sum and intrespectively):



                          enter image description here



                          documentclass[draft]{article}
                          usepackage{geometry}
                          usepackage{amsmath, amssymb}
                          usepackage[many]{tcolorbox}
                          usepackage{lipsum}
                          definecolor{myblue}{RGB}{0,163,243}

                          newtcolorbox[auto counter,number within=section]{exo}[1][]{
                          enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                          fonttitle=bfseriessffamily,
                          sharp corners,
                          detach title,
                          leftrule=16mm, %<-----------
                          underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                          at ([xshift=-8mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};}, % <-----------
                          breakable,pad at break=1mm,
                          #1,
                          code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                          }


                          newcommand{dint}{int}
                          newcommand{dsum}{sum}

                          usepackage{enumitem}
                          setlist[enumerate]{leftmargin=4pt} %<-----------

                          begin{document}

                          begin{exo}
                          begin{enumerate}
                          item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                          overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                          En d'{e}duire les sommes
                          begin{equation*}
                          overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{%
                          +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                          end{equation*}%
                          Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                          underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                          -1right) ^{n+1}u^{n+1}}{1+u}$

                          item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                          1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                          item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                          +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                          que :%
                          begin{equation*}
                          R_{n}left( alpha right) =left( -1right) ^{n+1}int_{0}^{1}dfrac{%
                          t^{left( n+1right) alpha }}{1+t^{alpha }}dt=dfrac{left( -1right)
                          ^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{%
                          left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }%
                          }{left( 1+t^{alpha }right) ^{2}}dt
                          end{equation*}%
                          Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                          left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                          item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                          end{enumerate}
                          end{exo}
                          end{document}






                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 8 hours ago









                          leandriisleandriis

                          15.2k1 gold badge11 silver badges36 bronze badges




                          15.2k1 gold badge11 silver badges36 bronze badges













                          • Thank you very match

                            – mustapha saadaoui
                            8 hours ago



















                          • Thank you very match

                            – mustapha saadaoui
                            8 hours ago

















                          Thank you very match

                          – mustapha saadaoui
                          8 hours ago





                          Thank you very match

                          – mustapha saadaoui
                          8 hours ago











                          1














                          Use the align* environment instead:



                          Output



                          documentclass{article}
                          usepackage{amsmath, amssymb}
                          usepackage[many]{tcolorbox}
                          usepackage{lipsum}
                          DeclareMathOperator{dint}{displaystyleint}
                          DeclareMathOperator{dsum}{displaystylesum}
                          definecolor{myblue}{RGB}{0,163,243}

                          newtcolorbox[auto counter,number within=section]{exo}[1][]{
                          enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                          fonttitle=bfseriessffamily,
                          sharp corners,
                          detach title,
                          leftrule=18mm,
                          underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                          at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                          breakable,pad at break=1mm,
                          #1,
                          code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                          }


                          begin{document}

                          begin{exo}
                          begin{enumerate}
                          item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                          overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                          En d'{e}duire les sommes
                          begin{equation*}
                          overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
                          +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
                          end{equation*}%

                          Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                          underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                          -1right) ^{n+1}u^{n+1}}{1+u}$

                          item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                          1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                          item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                          +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                          que :%
                          begin{align*}
                          R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
                          ~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
                          left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
                          end{align*}
                          Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                          left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                          item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                          end{enumerate}
                          end{exo}
                          end{document}





                          share|improve this answer




























                            1














                            Use the align* environment instead:



                            Output



                            documentclass{article}
                            usepackage{amsmath, amssymb}
                            usepackage[many]{tcolorbox}
                            usepackage{lipsum}
                            DeclareMathOperator{dint}{displaystyleint}
                            DeclareMathOperator{dsum}{displaystylesum}
                            definecolor{myblue}{RGB}{0,163,243}

                            newtcolorbox[auto counter,number within=section]{exo}[1][]{
                            enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                            fonttitle=bfseriessffamily,
                            sharp corners,
                            detach title,
                            leftrule=18mm,
                            underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                            at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                            breakable,pad at break=1mm,
                            #1,
                            code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                            }


                            begin{document}

                            begin{exo}
                            begin{enumerate}
                            item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                            overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                            En d'{e}duire les sommes
                            begin{equation*}
                            overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
                            +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
                            end{equation*}%

                            Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                            underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                            -1right) ^{n+1}u^{n+1}}{1+u}$

                            item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                            1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                            item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                            +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                            que :%
                            begin{align*}
                            R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
                            ~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
                            left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
                            end{align*}
                            Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                            left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                            item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                            end{enumerate}
                            end{exo}
                            end{document}





                            share|improve this answer


























                              1












                              1








                              1







                              Use the align* environment instead:



                              Output



                              documentclass{article}
                              usepackage{amsmath, amssymb}
                              usepackage[many]{tcolorbox}
                              usepackage{lipsum}
                              DeclareMathOperator{dint}{displaystyleint}
                              DeclareMathOperator{dsum}{displaystylesum}
                              definecolor{myblue}{RGB}{0,163,243}

                              newtcolorbox[auto counter,number within=section]{exo}[1][]{
                              enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                              fonttitle=bfseriessffamily,
                              sharp corners,
                              detach title,
                              leftrule=18mm,
                              underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                              at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                              breakable,pad at break=1mm,
                              #1,
                              code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                              }


                              begin{document}

                              begin{exo}
                              begin{enumerate}
                              item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                              overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                              En d'{e}duire les sommes
                              begin{equation*}
                              overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
                              +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
                              end{equation*}%

                              Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                              underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                              -1right) ^{n+1}u^{n+1}}{1+u}$

                              item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                              1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                              item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                              +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                              que :%
                              begin{align*}
                              R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
                              ~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
                              left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
                              end{align*}
                              Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                              left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                              item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                              end{enumerate}
                              end{exo}
                              end{document}





                              share|improve this answer













                              Use the align* environment instead:



                              Output



                              documentclass{article}
                              usepackage{amsmath, amssymb}
                              usepackage[many]{tcolorbox}
                              usepackage{lipsum}
                              DeclareMathOperator{dint}{displaystyleint}
                              DeclareMathOperator{dsum}{displaystylesum}
                              definecolor{myblue}{RGB}{0,163,243}

                              newtcolorbox[auto counter,number within=section]{exo}[1][]{
                              enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                              fonttitle=bfseriessffamily,
                              sharp corners,
                              detach title,
                              leftrule=18mm,
                              underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                              at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                              breakable,pad at break=1mm,
                              #1,
                              code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                              }


                              begin{document}

                              begin{exo}
                              begin{enumerate}
                              item Soit $alpha >0$ , Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                              overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+nalpha }$ .
                              En d'{e}duire les sommes
                              begin{equation*}
                              overset{+infty }{underset{n,=1}{sum }}dfrac{(-1)^{n}}{n}~;overset{
                              +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n}
                              end{equation*}%

                              Indication : On pourra utiliser quetextit{ }$dfrac{1}{1+u}=overset{n}{%
                              underset{k,=,0}{dsum }}left( -1right) ^{k}u^{k}+dfrac{left(
                              -1right) ^{n+1}u^{n+1}}{1+u}$

                              item Calculer $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{%
                              1+n}$ et $overset{+infty }{underset{n=,0}{dsum }}dfrac{(-1)^{n}}{1+2n}$

                              item On pose , pour $alpha >0$ , $R_{n}left( alpha right) =overset{%
                              +infty }{underset{k=n+1}{dsum }}dfrac{(-1)^{k}}{1+kalpha }$ , montrer
                              que :%
                              begin{align*}
                              R_{n}left( alpha right) &=left( -1right) ^{n+1}int_{0}^{1}dfrac{t^{left( n+1right) alpha }}{1+t^{alpha }}dt\
                              ~ &=dfrac{left( -1right)^{n+1}}{2left( n+1right) alpha +2}+dfrac{alpha left( -1right) ^{n+1}}{
                              left( n+1right) alpha +1}int_{0}^{1}dfrac{t^{left( n+2right) alpha }}{left( 1+t^{alpha }right) ^{2}}dt
                              end{align*}
                              Montrer que $R_{n}left( alpha right) underset{+infty }{sim }dfrac{%
                              left( -1right) ^{n+1}}{2left( n+1right) alpha +2}.$

                              item Etudier la nature de la s'{e}rie $sum R_{n}left( alpha right) .$
                              end{enumerate}
                              end{exo}
                              end{document}






                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered 8 hours ago









                              M. Al JumailyM. Al Jumaily

                              1,6932 gold badges3 silver badges16 bronze badges




                              1,6932 gold badges3 silver badges16 bronze badges























                                  1














                                  I believe you shouldn't want to widen the textblock. Instad, do learn about the align* environment -- used in the example below -- of the amsmath package. In addition, you shouldn't rely on left and right as much. For the document at hand, none of the left and right instances are needed.



                                  Also, do make a habit of writing dsum_{n=0}^{infty} instead of overset{n}{underset{k,=,0}{dsum }}.



                                  enter image description here



                                  documentclass{article}
                                  usepackage{amsmath, amssymb}
                                  allowdisplaybreaks
                                  usepackage[many]{tcolorbox}
                                  usepackage{lipsum}
                                  usepackage[T1]{fontenc} % to allow direct writing of "é"
                                  usepackage[french]{babel} % obey various French typographic criteria

                                  definecolor{myblue}{RGB}{0,163,243}
                                  newtcolorbox[auto counter,number within=section]{exo}[1][]{
                                  enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                                  fonttitle=bfseriessffamily,
                                  sharp corners,
                                  detach title,
                                  leftrule=18mm,
                                  underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
                                  at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                                  breakable,pad at break=1mm,
                                  #1,
                                  code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                                  }

                                  %% Two new commands:
                                  providecommanddsum{displaystylesum}
                                  providecommanddint{displaystyleint}

                                  begin{document}

                                  begin{exo}
                                  begin{enumerate}
                                  item Soit $alpha >0$.
                                  Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
                                  dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.

                                  En déduire les sommes
                                  $dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.

                                  Indication: On pourra utiliser que
                                  [
                                  frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
                                  frac{(-1) ^{n+1}u^{n+1}}{1+u},.
                                  ]

                                  item Calculer
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.

                                  item On pose, pour $alpha >0$,
                                  $R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.

                                  Montrer que:
                                  begin{align*}
                                  R_{n}(alpha)
                                  &=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
                                  &=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
                                  dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
                                  int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
                                  end{align*}
                                  Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
                                  (-1) ^{n+1}}{2(n+1) alpha +2}.$

                                  item Etudier la nature de la série
                                  $dsum R_{n}(alpha)$.
                                  end{enumerate}
                                  end{exo}
                                  end{document}





                                  share|improve this answer
























                                  • you can change dfrac by displaystylefrac and dsum by displaystylesum

                                    – mustapha saadaoui
                                    8 hours ago











                                  • @mustaphasaadaoui - The amsmath package provides a definition for dfrac; hence, no need to define this instruction again.

                                    – Mico
                                    7 hours ago
















                                  1














                                  I believe you shouldn't want to widen the textblock. Instad, do learn about the align* environment -- used in the example below -- of the amsmath package. In addition, you shouldn't rely on left and right as much. For the document at hand, none of the left and right instances are needed.



                                  Also, do make a habit of writing dsum_{n=0}^{infty} instead of overset{n}{underset{k,=,0}{dsum }}.



                                  enter image description here



                                  documentclass{article}
                                  usepackage{amsmath, amssymb}
                                  allowdisplaybreaks
                                  usepackage[many]{tcolorbox}
                                  usepackage{lipsum}
                                  usepackage[T1]{fontenc} % to allow direct writing of "é"
                                  usepackage[french]{babel} % obey various French typographic criteria

                                  definecolor{myblue}{RGB}{0,163,243}
                                  newtcolorbox[auto counter,number within=section]{exo}[1][]{
                                  enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                                  fonttitle=bfseriessffamily,
                                  sharp corners,
                                  detach title,
                                  leftrule=18mm,
                                  underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
                                  at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                                  breakable,pad at break=1mm,
                                  #1,
                                  code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                                  }

                                  %% Two new commands:
                                  providecommanddsum{displaystylesum}
                                  providecommanddint{displaystyleint}

                                  begin{document}

                                  begin{exo}
                                  begin{enumerate}
                                  item Soit $alpha >0$.
                                  Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
                                  dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.

                                  En déduire les sommes
                                  $dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.

                                  Indication: On pourra utiliser que
                                  [
                                  frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
                                  frac{(-1) ^{n+1}u^{n+1}}{1+u},.
                                  ]

                                  item Calculer
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.

                                  item On pose, pour $alpha >0$,
                                  $R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.

                                  Montrer que:
                                  begin{align*}
                                  R_{n}(alpha)
                                  &=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
                                  &=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
                                  dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
                                  int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
                                  end{align*}
                                  Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
                                  (-1) ^{n+1}}{2(n+1) alpha +2}.$

                                  item Etudier la nature de la série
                                  $dsum R_{n}(alpha)$.
                                  end{enumerate}
                                  end{exo}
                                  end{document}





                                  share|improve this answer
























                                  • you can change dfrac by displaystylefrac and dsum by displaystylesum

                                    – mustapha saadaoui
                                    8 hours ago











                                  • @mustaphasaadaoui - The amsmath package provides a definition for dfrac; hence, no need to define this instruction again.

                                    – Mico
                                    7 hours ago














                                  1












                                  1








                                  1







                                  I believe you shouldn't want to widen the textblock. Instad, do learn about the align* environment -- used in the example below -- of the amsmath package. In addition, you shouldn't rely on left and right as much. For the document at hand, none of the left and right instances are needed.



                                  Also, do make a habit of writing dsum_{n=0}^{infty} instead of overset{n}{underset{k,=,0}{dsum }}.



                                  enter image description here



                                  documentclass{article}
                                  usepackage{amsmath, amssymb}
                                  allowdisplaybreaks
                                  usepackage[many]{tcolorbox}
                                  usepackage{lipsum}
                                  usepackage[T1]{fontenc} % to allow direct writing of "é"
                                  usepackage[french]{babel} % obey various French typographic criteria

                                  definecolor{myblue}{RGB}{0,163,243}
                                  newtcolorbox[auto counter,number within=section]{exo}[1][]{
                                  enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                                  fonttitle=bfseriessffamily,
                                  sharp corners,
                                  detach title,
                                  leftrule=18mm,
                                  underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
                                  at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                                  breakable,pad at break=1mm,
                                  #1,
                                  code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                                  }

                                  %% Two new commands:
                                  providecommanddsum{displaystylesum}
                                  providecommanddint{displaystyleint}

                                  begin{document}

                                  begin{exo}
                                  begin{enumerate}
                                  item Soit $alpha >0$.
                                  Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
                                  dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.

                                  En déduire les sommes
                                  $dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.

                                  Indication: On pourra utiliser que
                                  [
                                  frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
                                  frac{(-1) ^{n+1}u^{n+1}}{1+u},.
                                  ]

                                  item Calculer
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.

                                  item On pose, pour $alpha >0$,
                                  $R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.

                                  Montrer que:
                                  begin{align*}
                                  R_{n}(alpha)
                                  &=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
                                  &=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
                                  dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
                                  int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
                                  end{align*}
                                  Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
                                  (-1) ^{n+1}}{2(n+1) alpha +2}.$

                                  item Etudier la nature de la série
                                  $dsum R_{n}(alpha)$.
                                  end{enumerate}
                                  end{exo}
                                  end{document}





                                  share|improve this answer













                                  I believe you shouldn't want to widen the textblock. Instad, do learn about the align* environment -- used in the example below -- of the amsmath package. In addition, you shouldn't rely on left and right as much. For the document at hand, none of the left and right instances are needed.



                                  Also, do make a habit of writing dsum_{n=0}^{infty} instead of overset{n}{underset{k,=,0}{dsum }}.



                                  enter image description here



                                  documentclass{article}
                                  usepackage{amsmath, amssymb}
                                  allowdisplaybreaks
                                  usepackage[many]{tcolorbox}
                                  usepackage{lipsum}
                                  usepackage[T1]{fontenc} % to allow direct writing of "é"
                                  usepackage[french]{babel} % obey various French typographic criteria

                                  definecolor{myblue}{RGB}{0,163,243}
                                  newtcolorbox[auto counter,number within=section]{exo}[1][]{
                                  enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                                  fonttitle=bfseriessffamily,
                                  sharp corners,
                                  detach title,
                                  leftrule=18mm,
                                  underlay unbroken and first= {node[below,text=white,font=sffamilybfseries,align=center]
                                  at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                                  breakable,pad at break=1mm,
                                  #1,
                                  code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                                  }

                                  %% Two new commands:
                                  providecommanddsum{displaystylesum}
                                  providecommanddint{displaystyleint}

                                  begin{document}

                                  begin{exo}
                                  begin{enumerate}
                                  item Soit $alpha >0$.
                                  Montrer que $dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=
                                  dsum_{k=0}^{infty}dfrac{(-1)^{n}}{1+nalpha}$.

                                  En déduire les sommes
                                  $dsum_{n=1}^{infty}dfrac{(-1)^{n}}{n}$,
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$.

                                  Indication: On pourra utiliser que
                                  [
                                  frac{1}{1+u}=sum_{n=0}^{infty}(-1)^{k}u^{k}+
                                  frac{(-1) ^{n+1}u^{n+1}}{1+u},.
                                  ]

                                  item Calculer
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+n}$ et
                                  $dsum_{n=0}^{infty}dfrac{(-1)^{n}}{1+2n}$,.

                                  item On pose, pour $alpha >0$,
                                  $R_{n}(alpha) =dsum_{k=n+1}^{infty}dfrac{(-1)^{k}}{1+kalpha }$,.

                                  Montrer que:
                                  begin{align*}
                                  R_{n}(alpha)
                                  &=(-1) ^{n+1}int_{0}^{1}dfrac{t^{( n+1)alpha }}{1+t^{alpha }},dt \
                                  &=dfrac{(-1)^{n+1}}{2(n+1) alpha +2}+
                                  dfrac{alpha (-1)^{n+1}}{(n+1) alpha +1}
                                  int_{0}^{1}dfrac{t^{(n+2) alpha }}{( 1+t^{alpha})^{2}},dt,.
                                  end{align*}
                                  Montrer que $R_{n}(alpha) underset{+infty }{sim }dfrac{%
                                  (-1) ^{n+1}}{2(n+1) alpha +2}.$

                                  item Etudier la nature de la série
                                  $dsum R_{n}(alpha)$.
                                  end{enumerate}
                                  end{exo}
                                  end{document}






                                  share|improve this answer












                                  share|improve this answer



                                  share|improve this answer










                                  answered 8 hours ago









                                  MicoMico

                                  295k32 gold badges410 silver badges807 bronze badges




                                  295k32 gold badges410 silver badges807 bronze badges













                                  • you can change dfrac by displaystylefrac and dsum by displaystylesum

                                    – mustapha saadaoui
                                    8 hours ago











                                  • @mustaphasaadaoui - The amsmath package provides a definition for dfrac; hence, no need to define this instruction again.

                                    – Mico
                                    7 hours ago



















                                  • you can change dfrac by displaystylefrac and dsum by displaystylesum

                                    – mustapha saadaoui
                                    8 hours ago











                                  • @mustaphasaadaoui - The amsmath package provides a definition for dfrac; hence, no need to define this instruction again.

                                    – Mico
                                    7 hours ago

















                                  you can change dfrac by displaystylefrac and dsum by displaystylesum

                                  – mustapha saadaoui
                                  8 hours ago





                                  you can change dfrac by displaystylefrac and dsum by displaystylesum

                                  – mustapha saadaoui
                                  8 hours ago













                                  @mustaphasaadaoui - The amsmath package provides a definition for dfrac; hence, no need to define this instruction again.

                                  – Mico
                                  7 hours ago





                                  @mustaphasaadaoui - The amsmath package provides a definition for dfrac; hence, no need to define this instruction again.

                                  – Mico
                                  7 hours ago











                                  1














                                  I would suggest splitting one equation instead, and removing the many unnecessary left right pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem, mathtools and nccmath.



                                  documentclass[french]{article}
                                  usepackage[utf8]{inputenc}
                                  usepackage[T1]{fontenc}
                                  usepackage{babel}
                                  usepackage{mathtools, nccmath, amssymb}
                                  usepackage[many]{tcolorbox}
                                  usepackage{enumitem}
                                  usepackage{lipsum}
                                  newcommand{dint}{displaystyleint}
                                  newcommand{dsum}{displaystylesum}
                                  definecolor{myblue}{RGB}{0,163,243}

                                  newtcolorbox[auto counter,number within=section]{exo}[1][]{
                                  enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                                  fonttitle=bfseriessffamily,
                                  sharp corners,
                                  detach title,
                                  leftrule=18mm,
                                  underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                                  at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                                  breakable,pad at break=1mm,
                                  #1,
                                  code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                                  }


                                  begin{document}

                                  begin{exo}
                                  begin{enumerate}[wide=0pt, leftmargin=*]
                                  item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                                  dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
                                  En déduire les sommes
                                  begin{equation*}
                                  sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
                                  +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                                  end{equation*}%
                                  Indication : On pourra utiliser que useshortskip
                                  [ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]

                                  item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.

                                  item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
                                  begin{align*}
                                  R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
                                  t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
                                  & =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
                                  ( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
                                  }{( 1+t^{alpha }) ^{2}},dt
                                  end{align*}%
                                  Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$

                                  item Étudier la nature de la série $sum R_{n}left( alpha right) .$
                                  end{enumerate}
                                  end{exo}

                                  end{document}


                                  enter image description here






                                  share|improve this answer




























                                    1














                                    I would suggest splitting one equation instead, and removing the many unnecessary left right pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem, mathtools and nccmath.



                                    documentclass[french]{article}
                                    usepackage[utf8]{inputenc}
                                    usepackage[T1]{fontenc}
                                    usepackage{babel}
                                    usepackage{mathtools, nccmath, amssymb}
                                    usepackage[many]{tcolorbox}
                                    usepackage{enumitem}
                                    usepackage{lipsum}
                                    newcommand{dint}{displaystyleint}
                                    newcommand{dsum}{displaystylesum}
                                    definecolor{myblue}{RGB}{0,163,243}

                                    newtcolorbox[auto counter,number within=section]{exo}[1][]{
                                    enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                                    fonttitle=bfseriessffamily,
                                    sharp corners,
                                    detach title,
                                    leftrule=18mm,
                                    underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                                    at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                                    breakable,pad at break=1mm,
                                    #1,
                                    code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                                    }


                                    begin{document}

                                    begin{exo}
                                    begin{enumerate}[wide=0pt, leftmargin=*]
                                    item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                                    dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
                                    En déduire les sommes
                                    begin{equation*}
                                    sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
                                    +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                                    end{equation*}%
                                    Indication : On pourra utiliser que useshortskip
                                    [ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]

                                    item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.

                                    item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
                                    begin{align*}
                                    R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
                                    t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
                                    & =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
                                    ( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
                                    }{( 1+t^{alpha }) ^{2}},dt
                                    end{align*}%
                                    Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$

                                    item Étudier la nature de la série $sum R_{n}left( alpha right) .$
                                    end{enumerate}
                                    end{exo}

                                    end{document}


                                    enter image description here






                                    share|improve this answer


























                                      1












                                      1








                                      1







                                      I would suggest splitting one equation instead, and removing the many unnecessary left right pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem, mathtools and nccmath.



                                      documentclass[french]{article}
                                      usepackage[utf8]{inputenc}
                                      usepackage[T1]{fontenc}
                                      usepackage{babel}
                                      usepackage{mathtools, nccmath, amssymb}
                                      usepackage[many]{tcolorbox}
                                      usepackage{enumitem}
                                      usepackage{lipsum}
                                      newcommand{dint}{displaystyleint}
                                      newcommand{dsum}{displaystylesum}
                                      definecolor{myblue}{RGB}{0,163,243}

                                      newtcolorbox[auto counter,number within=section]{exo}[1][]{
                                      enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                                      fonttitle=bfseriessffamily,
                                      sharp corners,
                                      detach title,
                                      leftrule=18mm,
                                      underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                                      at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                                      breakable,pad at break=1mm,
                                      #1,
                                      code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                                      }


                                      begin{document}

                                      begin{exo}
                                      begin{enumerate}[wide=0pt, leftmargin=*]
                                      item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                                      dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
                                      En déduire les sommes
                                      begin{equation*}
                                      sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
                                      +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                                      end{equation*}%
                                      Indication : On pourra utiliser que useshortskip
                                      [ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]

                                      item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.

                                      item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
                                      begin{align*}
                                      R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
                                      t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
                                      & =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
                                      ( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
                                      }{( 1+t^{alpha }) ^{2}},dt
                                      end{align*}%
                                      Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$

                                      item Étudier la nature de la série $sum R_{n}left( alpha right) .$
                                      end{enumerate}
                                      end{exo}

                                      end{document}


                                      enter image description here






                                      share|improve this answer













                                      I would suggest splitting one equation instead, and removing the many unnecessary left right pairs. Unrelated: I don't see why you didn't type your accented letters directly on the keyboard, all the more so as all modern TeX editors understand utf8. Iadded some improvements with enumitem, mathtools and nccmath.



                                      documentclass[french]{article}
                                      usepackage[utf8]{inputenc}
                                      usepackage[T1]{fontenc}
                                      usepackage{babel}
                                      usepackage{mathtools, nccmath, amssymb}
                                      usepackage[many]{tcolorbox}
                                      usepackage{enumitem}
                                      usepackage{lipsum}
                                      newcommand{dint}{displaystyleint}
                                      newcommand{dsum}{displaystylesum}
                                      definecolor{myblue}{RGB}{0,163,243}

                                      newtcolorbox[auto counter,number within=section]{exo}[1][]{
                                      enhanced jigsaw,colback=white,colframe=myblue,coltitle=myblue,
                                      fonttitle=bfseriessffamily,
                                      sharp corners,
                                      detach title,
                                      leftrule=18mm,
                                      underlay unbroken and first={node[below,text=white,font=sffamilybfseries,align=center]
                                      at ([xshift=-11mm,yshift=-1mm]interior.north west) {Exercice\thetcbcounter};},
                                      breakable,pad at break=1mm,
                                      #1,
                                      code={ifdefempty{tcbtitletext}{}{tcbset{before upper={tcbtitleparmedskip}}}},
                                      }


                                      begin{document}

                                      begin{exo}
                                      begin{enumerate}[wide=0pt, leftmargin=*]
                                      item Soit $alpha >0$ , Montrer que $smash[b]{dint_{0}^{1}dfrac{dt}{1+t^{alpha }}=%
                                      dsum_{n=,0}^{+infty}dfrac{(-1)^{n}}{1+nalpha }}$ .
                                      En déduire les sommes
                                      begin{equation*}
                                      sum_{n,=1}^{+infty }dfrac{(-1)^{n}}{n}~;overset{%
                                      +infty }{underset{n,=,0}{sum }}dfrac{(-1)^{n}}{1+2n},
                                      end{equation*}%
                                      Indication : On pourra utiliser que useshortskip
                                      [ frac{1}{1+u}=sum_{k,=,0}^{n}( -1)^{k}u^{k} + frac{(-1)^{n+1}u^{n+1}}{1+u} ]

                                      item Calculer $dsum _{n=,0}^{+infty }dfrac{(-1)^{n}}{1+n}$ et $dsum_{n=,0}^{+infty }dfrac{(-1)^{n}}{1+2n}$.

                                      item On pose, pour $alpha >0$, $R_{n}( alpha) = smashoperator{dsum_ {k=n+1}^{+infty}}:dfrac{(-1)^{k}}{1+kalpha}$, montrer que :%
                                      begin{align*}
                                      R_{n}( alpha) & =( -1) ^{n+1}int_{0}^{1}dfrac{%
                                      t^{left( n+1right) alpha }}{1+t^{alpha }},dt\
                                      & =dfrac{( -1)^{n+1}}{2( n+1) alpha +2}+dfrac{alpha( -1) ^{n+1}}{%
                                      ( n+1) alpha +1}int_{0}^{1}dfrac{t^{( n+2) alpha }%
                                      }{( 1+t^{alpha }) ^{2}},dt
                                      end{align*}%
                                      Montrer que $R_{n}( alpha) underset{+infty }{sim }dfrac{( -1) ^{n+1}}{2( n+1) alpha +2}.$

                                      item Étudier la nature de la série $sum R_{n}left( alpha right) .$
                                      end{enumerate}
                                      end{exo}

                                      end{document}


                                      enter image description here







                                      share|improve this answer












                                      share|improve this answer



                                      share|improve this answer










                                      answered 8 hours ago









                                      BernardBernard

                                      183k7 gold badges83 silver badges216 bronze badges




                                      183k7 gold badges83 silver badges216 bronze badges






















                                          mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.










                                          draft saved

                                          draft discarded


















                                          mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.













                                          mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.












                                          mustapha saadaoui is a new contributor. Be nice, and check out our Code of Conduct.
















                                          Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f498110%2fcan-you-help-me-to-widen-the-page-thank-you%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

                                          Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

                                          Ciclooctatetraenă Vezi și | Bibliografie | Meniu de navigare637866text4148569-500570979m