Relationship between GCD, LCM and the Riemann Zeta functionValues of the Riemann Zeta function and the...
Can someone explain this logical statement?
writting to disk and compress with xz at the same time
Does the Entangle spell require existing vegetation?
Construct a pentagon avoiding compass use
Doing research in academia and not liking competition
Why do mean value theorems have open interval for differentiablity while closed for continuity?
Old short story where the future emperor of the galaxy is taken for a tour around Earth
Krazy language in Krazy Kat, 25 July 1936
What is the German equivalent of 干物女 (dried fish woman)?
Commutator subgroup of Heisenberg group.
Deep Learning based time series forecasting
Can a continent naturally split into two distant parts within a week?
3D-Plot with an inequality condition for parameter values
Why do they not say "The Baby"
Why doesn't Anakin's lightsaber explode when it's chopped in half on Geonosis?
Project Euler, problem # 9, Pythagorean triplet
Why does a small sanhedrin have 23 judges rather than 21?
I do not have power to all my breakers
Is this more than a packing puzzle?
Too many spies!
How did John Lennon tune his guitar
How to fit a linear model in the Bayesian way in Mathematica?
(algebraic topology) question about the cellular approximation theorem
Why is "dark" an adverb in this sentence?
Relationship between GCD, LCM and the Riemann Zeta function
Values of the Riemann Zeta function and the Ramanujan Summation - How strong is the connection?Calculating the Zeroes of the Riemann-Zeta functionWhat is so interesting about the zeroes of the Riemann $zeta$ function?How to evaluate a zero of the Riemann zeta function?Is there any relationship between the Riemann z function and strange attractors?Relationship between Riemann Zeta function and Prime zeta functionQuestion on Integral Transform Related to Riemann Zeta Function $zeta(s)$Relation of prime indexed series with Riemann zeta functionRiemann zeta for real argument between 0 and 1 using Mellin, with short asymptotic expansionReference request on the Riemann Zeta function
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
$begingroup$
Let $zeta(s)$ be the Riemann zeta function. I observed that as for large $n$, as $s$ increased,
$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)}{text{lcm}(k,i)}bigg)^s approx zeta(s+1)
$$
or equivalently
$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)^2}{ki}bigg)^s approx zeta(s+1)
$$
A few values of $s$, LHS and the RHS are given below
$$(3,1.221,1.202)$$
$$(4,1.084,1.0823)$$
$$(5,1.0372,1.0369)$$
$$(6,1.01737,1.01734)$$
$$(7,1.00835,1.00834)$$
$$(9,1.00494,1.00494)$$
$$(19,1.0000009539,1.0000009539)$$
Question: Is the LHS asymptotic to $zeta(s+1)$ ?
number-theory elementary-number-theory summation prime-numbers analytic-number-theory
$endgroup$
add a comment |
$begingroup$
Let $zeta(s)$ be the Riemann zeta function. I observed that as for large $n$, as $s$ increased,
$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)}{text{lcm}(k,i)}bigg)^s approx zeta(s+1)
$$
or equivalently
$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)^2}{ki}bigg)^s approx zeta(s+1)
$$
A few values of $s$, LHS and the RHS are given below
$$(3,1.221,1.202)$$
$$(4,1.084,1.0823)$$
$$(5,1.0372,1.0369)$$
$$(6,1.01737,1.01734)$$
$$(7,1.00835,1.00834)$$
$$(9,1.00494,1.00494)$$
$$(19,1.0000009539,1.0000009539)$$
Question: Is the LHS asymptotic to $zeta(s+1)$ ?
number-theory elementary-number-theory summation prime-numbers analytic-number-theory
$endgroup$
add a comment |
$begingroup$
Let $zeta(s)$ be the Riemann zeta function. I observed that as for large $n$, as $s$ increased,
$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)}{text{lcm}(k,i)}bigg)^s approx zeta(s+1)
$$
or equivalently
$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)^2}{ki}bigg)^s approx zeta(s+1)
$$
A few values of $s$, LHS and the RHS are given below
$$(3,1.221,1.202)$$
$$(4,1.084,1.0823)$$
$$(5,1.0372,1.0369)$$
$$(6,1.01737,1.01734)$$
$$(7,1.00835,1.00834)$$
$$(9,1.00494,1.00494)$$
$$(19,1.0000009539,1.0000009539)$$
Question: Is the LHS asymptotic to $zeta(s+1)$ ?
number-theory elementary-number-theory summation prime-numbers analytic-number-theory
$endgroup$
Let $zeta(s)$ be the Riemann zeta function. I observed that as for large $n$, as $s$ increased,
$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)}{text{lcm}(k,i)}bigg)^s approx zeta(s+1)
$$
or equivalently
$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)^2}{ki}bigg)^s approx zeta(s+1)
$$
A few values of $s$, LHS and the RHS are given below
$$(3,1.221,1.202)$$
$$(4,1.084,1.0823)$$
$$(5,1.0372,1.0369)$$
$$(6,1.01737,1.01734)$$
$$(7,1.00835,1.00834)$$
$$(9,1.00494,1.00494)$$
$$(19,1.0000009539,1.0000009539)$$
Question: Is the LHS asymptotic to $zeta(s+1)$ ?
number-theory elementary-number-theory summation prime-numbers analytic-number-theory
number-theory elementary-number-theory summation prime-numbers analytic-number-theory
edited 8 hours ago
Nilotpal Kanti Sinha
asked 9 hours ago
Nilotpal Kanti SinhaNilotpal Kanti Sinha
5,3792 gold badges16 silver badges42 bronze badges
5,3792 gold badges16 silver badges42 bronze badges
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
With $(A,B) = (ga,gb), gcd(a,b)=1$ then
$$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$
$$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
$$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$
As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293112%2frelationship-between-gcd-lcm-and-the-riemann-zeta-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With $(A,B) = (ga,gb), gcd(a,b)=1$ then
$$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$
$$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
$$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$
As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$
$endgroup$
add a comment |
$begingroup$
With $(A,B) = (ga,gb), gcd(a,b)=1$ then
$$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$
$$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
$$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$
As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$
$endgroup$
add a comment |
$begingroup$
With $(A,B) = (ga,gb), gcd(a,b)=1$ then
$$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$
$$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
$$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$
As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$
$endgroup$
With $(A,B) = (ga,gb), gcd(a,b)=1$ then
$$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$
$$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
$$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$
As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$
answered 8 hours ago
reunsreuns
23.6k2 gold badges14 silver badges61 bronze badges
23.6k2 gold badges14 silver badges61 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293112%2frelationship-between-gcd-lcm-and-the-riemann-zeta-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown