Relationship between GCD, LCM and the Riemann Zeta functionValues of the Riemann Zeta function and the...

Can someone explain this logical statement?

writting to disk and compress with xz at the same time

Does the Entangle spell require existing vegetation?

Construct a pentagon avoiding compass use

Doing research in academia and not liking competition

Why do mean value theorems have open interval for differentiablity while closed for continuity?

Old short story where the future emperor of the galaxy is taken for a tour around Earth

Krazy language in Krazy Kat, 25 July 1936

What is the German equivalent of 干物女 (dried fish woman)?

Commutator subgroup of Heisenberg group.

Deep Learning based time series forecasting

Can a continent naturally split into two distant parts within a week?

3D-Plot with an inequality condition for parameter values

Why do they not say "The Baby"

Why doesn't Anakin's lightsaber explode when it's chopped in half on Geonosis?

Project Euler, problem # 9, Pythagorean triplet

Why does a small sanhedrin have 23 judges rather than 21?

I do not have power to all my breakers

Is this more than a packing puzzle?

Too many spies!

How did John Lennon tune his guitar

How to fit a linear model in the Bayesian way in Mathematica?

(algebraic topology) question about the cellular approximation theorem

Why is "dark" an adverb in this sentence?



Relationship between GCD, LCM and the Riemann Zeta function


Values of the Riemann Zeta function and the Ramanujan Summation - How strong is the connection?Calculating the Zeroes of the Riemann-Zeta functionWhat is so interesting about the zeroes of the Riemann $zeta$ function?How to evaluate a zero of the Riemann zeta function?Is there any relationship between the Riemann z function and strange attractors?Relationship between Riemann Zeta function and Prime zeta functionQuestion on Integral Transform Related to Riemann Zeta Function $zeta(s)$Relation of prime indexed series with Riemann zeta functionRiemann zeta for real argument between 0 and 1 using Mellin, with short asymptotic expansionReference request on the Riemann Zeta function






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







5












$begingroup$


Let $zeta(s)$ be the Riemann zeta function. I observed that as for large $n$, as $s$ increased,



$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)}{text{lcm}(k,i)}bigg)^s approx zeta(s+1)
$$



or equivalently



$$
frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)^2}{ki}bigg)^s approx zeta(s+1)
$$



A few values of $s$, LHS and the RHS are given below



$$(3,1.221,1.202)$$
$$(4,1.084,1.0823)$$
$$(5,1.0372,1.0369)$$
$$(6,1.01737,1.01734)$$
$$(7,1.00835,1.00834)$$
$$(9,1.00494,1.00494)$$
$$(19,1.0000009539,1.0000009539)$$



Question: Is the LHS asymptotic to $zeta(s+1)$ ?










share|cite|improve this question











$endgroup$



















    5












    $begingroup$


    Let $zeta(s)$ be the Riemann zeta function. I observed that as for large $n$, as $s$ increased,



    $$
    frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)}{text{lcm}(k,i)}bigg)^s approx zeta(s+1)
    $$



    or equivalently



    $$
    frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)^2}{ki}bigg)^s approx zeta(s+1)
    $$



    A few values of $s$, LHS and the RHS are given below



    $$(3,1.221,1.202)$$
    $$(4,1.084,1.0823)$$
    $$(5,1.0372,1.0369)$$
    $$(6,1.01737,1.01734)$$
    $$(7,1.00835,1.00834)$$
    $$(9,1.00494,1.00494)$$
    $$(19,1.0000009539,1.0000009539)$$



    Question: Is the LHS asymptotic to $zeta(s+1)$ ?










    share|cite|improve this question











    $endgroup$















      5












      5








      5


      3



      $begingroup$


      Let $zeta(s)$ be the Riemann zeta function. I observed that as for large $n$, as $s$ increased,



      $$
      frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)}{text{lcm}(k,i)}bigg)^s approx zeta(s+1)
      $$



      or equivalently



      $$
      frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)^2}{ki}bigg)^s approx zeta(s+1)
      $$



      A few values of $s$, LHS and the RHS are given below



      $$(3,1.221,1.202)$$
      $$(4,1.084,1.0823)$$
      $$(5,1.0372,1.0369)$$
      $$(6,1.01737,1.01734)$$
      $$(7,1.00835,1.00834)$$
      $$(9,1.00494,1.00494)$$
      $$(19,1.0000009539,1.0000009539)$$



      Question: Is the LHS asymptotic to $zeta(s+1)$ ?










      share|cite|improve this question











      $endgroup$




      Let $zeta(s)$ be the Riemann zeta function. I observed that as for large $n$, as $s$ increased,



      $$
      frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)}{text{lcm}(k,i)}bigg)^s approx zeta(s+1)
      $$



      or equivalently



      $$
      frac{1}{n}sum_{k = 1}^nsum_{i = 1}^{k} bigg(frac{gcd(k,i)^2}{ki}bigg)^s approx zeta(s+1)
      $$



      A few values of $s$, LHS and the RHS are given below



      $$(3,1.221,1.202)$$
      $$(4,1.084,1.0823)$$
      $$(5,1.0372,1.0369)$$
      $$(6,1.01737,1.01734)$$
      $$(7,1.00835,1.00834)$$
      $$(9,1.00494,1.00494)$$
      $$(19,1.0000009539,1.0000009539)$$



      Question: Is the LHS asymptotic to $zeta(s+1)$ ?







      number-theory elementary-number-theory summation prime-numbers analytic-number-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 8 hours ago







      Nilotpal Kanti Sinha

















      asked 9 hours ago









      Nilotpal Kanti SinhaNilotpal Kanti Sinha

      5,3792 gold badges16 silver badges42 bronze badges




      5,3792 gold badges16 silver badges42 bronze badges






















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          With $(A,B) = (ga,gb), gcd(a,b)=1$ then



          $$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$



          $$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
          $$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$



          As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$






          share|cite|improve this answer









          $endgroup$
















            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293112%2frelationship-between-gcd-lcm-and-the-riemann-zeta-function%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            With $(A,B) = (ga,gb), gcd(a,b)=1$ then



            $$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$



            $$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
            $$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$



            As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$






            share|cite|improve this answer









            $endgroup$


















              6












              $begingroup$

              With $(A,B) = (ga,gb), gcd(a,b)=1$ then



              $$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$



              $$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
              $$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$



              As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$






              share|cite|improve this answer









              $endgroup$
















                6












                6








                6





                $begingroup$

                With $(A,B) = (ga,gb), gcd(a,b)=1$ then



                $$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$



                $$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
                $$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$



                As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$






                share|cite|improve this answer









                $endgroup$



                With $(A,B) = (ga,gb), gcd(a,b)=1$ then



                $$sum_{A,B, gcd(A,B) le G} frac{gcd(A,B)^s}{lcm(A,B)^s} = sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{gcd(ag,bg)^s}{lcm(ag,bg)^s}$$



                $$= sum_{gle G} sum_{a,b, gcd(a,b)=1}frac{g^s}{(abg)^s} = G sum_{a,b, gcd(a,b)=1}frac{1}{(ab)^s}$$
                $$ = G sum_d mu(d)sum_{u,v}frac{1}{(d^2uv)^s}= G (sum_d mu(d)d^{-2s})(sum_uu^{-s})(sum_v v^{-s}) = G frac{zeta(s)^2}{zeta(2s)}$$



                As $s to infty$ it $to G zeta(s)^2 approx Gzeta(s+1)$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 8 hours ago









                reunsreuns

                23.6k2 gold badges14 silver badges61 bronze badges




                23.6k2 gold badges14 silver badges61 bronze badges






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293112%2frelationship-between-gcd-lcm-and-the-riemann-zeta-function%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

                    Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

                    Ciclooctatetraenă Vezi și | Bibliografie | Meniu de navigare637866text4148569-500570979m