Plotting with different color for a single curvePlotting piecewise function with distinct colors in each...

Can White Castle?

Can ADFS connect to other SSO services?

Do French speakers not use the subjunctive informally?

How can I get more energy without spending coins?

Are Finite Automata Turing Complete?

Do flight schools typically have dress codes or expectations?

Does squid ink pasta bleed?

Change CPU MHz from Registry

Why is there no havdallah when going from Yom Tov into Shabbat?

What kind of wire should I use to pigtail an outlet?

Should I include salary information on my CV?

Links to webpages in books

Distance Matrix (plugin) - QGIS

Peace Arch without exiting USA

How come I was asked by a CBP officer why I was in the US?

Inverse-quotes-quine

Why do some games show lights shine through walls?

Should I tell my insurance company I'm making payments on my new car?

Is there any evidence that the small canisters (10 liters) of 95% oxygen actually help with altitude sickness?

Story-based adventure with functions and relationships

Smooth Julia set for quadratic polynomials

MH370 blackbox - is it still possible to retrieve data from it?

Unusual mail headers, evidence of an attempted attack. Have I been pwned?

Apply brace expansion in "reverse order"



Plotting with different color for a single curve


Plotting piecewise function with distinct colors in each sectionSubset of edges with a different colorNeed 4D plot (3D + color for function)Question about plotting one function with different colorsWant a different color for each curve displayed with ShowHow to plot data with different colors (or symbols) depending on a conditionListPlot with different color optionsListPlot with different color options part IIPlotting: every point in different colorPlotting a function with different parameters sets






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







3












$begingroup$


How to plot a function $f(x)=frac{3(4+x)}{3(2-x)-16}$ (say $x in [-15,15]$ ) with the condition that i want to give different color for each of the following cases



(i) when $frac{x+4}{3x+10}>0$ and $frac{x^2+8x+12}{3x+10}>0$



(ii) when $frac{x+4}{3x+10}>0$ and $frac{x^2+8x+12}{3x+10}<0$



(iii) when $frac{x+4}{3x+10}<0$ and $frac{x^2+8x+12}{3x+10}>0$










share|improve this question







New contributor



Wom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



















    3












    $begingroup$


    How to plot a function $f(x)=frac{3(4+x)}{3(2-x)-16}$ (say $x in [-15,15]$ ) with the condition that i want to give different color for each of the following cases



    (i) when $frac{x+4}{3x+10}>0$ and $frac{x^2+8x+12}{3x+10}>0$



    (ii) when $frac{x+4}{3x+10}>0$ and $frac{x^2+8x+12}{3x+10}<0$



    (iii) when $frac{x+4}{3x+10}<0$ and $frac{x^2+8x+12}{3x+10}>0$










    share|improve this question







    New contributor



    Wom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$















      3












      3








      3





      $begingroup$


      How to plot a function $f(x)=frac{3(4+x)}{3(2-x)-16}$ (say $x in [-15,15]$ ) with the condition that i want to give different color for each of the following cases



      (i) when $frac{x+4}{3x+10}>0$ and $frac{x^2+8x+12}{3x+10}>0$



      (ii) when $frac{x+4}{3x+10}>0$ and $frac{x^2+8x+12}{3x+10}<0$



      (iii) when $frac{x+4}{3x+10}<0$ and $frac{x^2+8x+12}{3x+10}>0$










      share|improve this question







      New contributor



      Wom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$




      How to plot a function $f(x)=frac{3(4+x)}{3(2-x)-16}$ (say $x in [-15,15]$ ) with the condition that i want to give different color for each of the following cases



      (i) when $frac{x+4}{3x+10}>0$ and $frac{x^2+8x+12}{3x+10}>0$



      (ii) when $frac{x+4}{3x+10}>0$ and $frac{x^2+8x+12}{3x+10}<0$



      (iii) when $frac{x+4}{3x+10}<0$ and $frac{x^2+8x+12}{3x+10}>0$







      plotting






      share|improve this question







      New contributor



      Wom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|improve this question







      New contributor



      Wom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|improve this question




      share|improve this question






      New contributor



      Wom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 11 hours ago









      WomWom

      162 bronze badges




      162 bronze badges




      New contributor



      Wom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      Wom is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.
























          4 Answers
          4






          active

          oldest

          votes


















          3












          $begingroup$

          Admittedly, not very different from the naïve answer already posted, just avoided repeating the function definitions.



          f[x_] := (3 (x + 4))/(3 (2 - x) - 16);

          g[x_] := (x + 4)/(3 x + 10);

          h[x_] := (x^2 + 8 x + 12)/(3 x + 10);

          a[x_] := (g[x] > 0 && h[x] > 0);
          b[x_] := (g[x] > 0 && h[x] < 0);
          c[x_] := (g[x] < 0 && h[x] > 0);

          Plot[{f[x] && a[x], f[x] && b[x], f[x] && c[x]}, {x, -15, 15},
          PlotRange -> {-3, 3}, PlotStyle -> Thickness[.01], Frame -> True,
          Axes -> False]


          enter image description here






          share|improve this answer









          $endgroup$





















            3












            $begingroup$

            You could use the option ColorFunction with ColorFunctionScaling->False. First your conditions:



            cond1[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)>0
            cond2[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)<0
            cond3[x_] := (x+4)/(3x+10)<0 && (x^2+8x+12)/(3x+10)>0


            And your function:



            f[x_] := (3(4+x))/(3(2-x)-16)


            Then:



            Plot[f[x], {x, -15, 15},
            PlotRange -> {All, {-3, 3}},
            ColorFunctionScaling -> False,
            ColorFunction -> Function @ Piecewise[
            {
            {ColorData[97][1], cond1[#]},
            {ColorData[97][2], cond2[#]},
            {ColorData[97][3], cond3[#]}
            },
            ColorData[97][4]
            ]
            ]


            enter image description here






            share|improve this answer









            $endgroup$





















              1












              $begingroup$

              Naïve solution:



              f1[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)
              f2[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) < 0] := (3 (4 + x))/(3 (2 - x) - 16)
              f3[x_] /; And[(x + 4)/(3 x + 10) < 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)

              Plot[{f1[x], f2[x], f3[x]}, {x, -15, 15}, PlotRange -> {All, {-10, 10}}]


              enter image description here






              share|improve this answer









              $endgroup$





















                1












                $begingroup$

                An alternative way to specify a color function:



                f[x_] := (3 (4 + x))/(3 (2 - x) - 16)
                cf = ColorData[97]@(1 + {1, 2}.UnitStep[{(# + 4)/(3 # + 10), (#^2 + 8 # + 12)/(3 # + 10)}]) &;

                Plot[f[x], {x, -15, 15},
                PlotRange -> {All, {-3, 3}},
                BaseStyle -> AbsoluteThickness[5],
                ColorFunction -> cf,
                ColorFunctionScaling -> False]


                enter image description here






                share|improve this answer









                $endgroup$
















                  Your Answer








                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "387"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: false,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: null,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });






                  Wom is a new contributor. Be nice, and check out our Code of Conduct.










                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f200790%2fplotting-with-different-color-for-a-single-curve%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  3












                  $begingroup$

                  Admittedly, not very different from the naïve answer already posted, just avoided repeating the function definitions.



                  f[x_] := (3 (x + 4))/(3 (2 - x) - 16);

                  g[x_] := (x + 4)/(3 x + 10);

                  h[x_] := (x^2 + 8 x + 12)/(3 x + 10);

                  a[x_] := (g[x] > 0 && h[x] > 0);
                  b[x_] := (g[x] > 0 && h[x] < 0);
                  c[x_] := (g[x] < 0 && h[x] > 0);

                  Plot[{f[x] && a[x], f[x] && b[x], f[x] && c[x]}, {x, -15, 15},
                  PlotRange -> {-3, 3}, PlotStyle -> Thickness[.01], Frame -> True,
                  Axes -> False]


                  enter image description here






                  share|improve this answer









                  $endgroup$


















                    3












                    $begingroup$

                    Admittedly, not very different from the naïve answer already posted, just avoided repeating the function definitions.



                    f[x_] := (3 (x + 4))/(3 (2 - x) - 16);

                    g[x_] := (x + 4)/(3 x + 10);

                    h[x_] := (x^2 + 8 x + 12)/(3 x + 10);

                    a[x_] := (g[x] > 0 && h[x] > 0);
                    b[x_] := (g[x] > 0 && h[x] < 0);
                    c[x_] := (g[x] < 0 && h[x] > 0);

                    Plot[{f[x] && a[x], f[x] && b[x], f[x] && c[x]}, {x, -15, 15},
                    PlotRange -> {-3, 3}, PlotStyle -> Thickness[.01], Frame -> True,
                    Axes -> False]


                    enter image description here






                    share|improve this answer









                    $endgroup$
















                      3












                      3








                      3





                      $begingroup$

                      Admittedly, not very different from the naïve answer already posted, just avoided repeating the function definitions.



                      f[x_] := (3 (x + 4))/(3 (2 - x) - 16);

                      g[x_] := (x + 4)/(3 x + 10);

                      h[x_] := (x^2 + 8 x + 12)/(3 x + 10);

                      a[x_] := (g[x] > 0 && h[x] > 0);
                      b[x_] := (g[x] > 0 && h[x] < 0);
                      c[x_] := (g[x] < 0 && h[x] > 0);

                      Plot[{f[x] && a[x], f[x] && b[x], f[x] && c[x]}, {x, -15, 15},
                      PlotRange -> {-3, 3}, PlotStyle -> Thickness[.01], Frame -> True,
                      Axes -> False]


                      enter image description here






                      share|improve this answer









                      $endgroup$



                      Admittedly, not very different from the naïve answer already posted, just avoided repeating the function definitions.



                      f[x_] := (3 (x + 4))/(3 (2 - x) - 16);

                      g[x_] := (x + 4)/(3 x + 10);

                      h[x_] := (x^2 + 8 x + 12)/(3 x + 10);

                      a[x_] := (g[x] > 0 && h[x] > 0);
                      b[x_] := (g[x] > 0 && h[x] < 0);
                      c[x_] := (g[x] < 0 && h[x] > 0);

                      Plot[{f[x] && a[x], f[x] && b[x], f[x] && c[x]}, {x, -15, 15},
                      PlotRange -> {-3, 3}, PlotStyle -> Thickness[.01], Frame -> True,
                      Axes -> False]


                      enter image description here







                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered 10 hours ago









                      mjwmjw

                      1,37510 bronze badges




                      1,37510 bronze badges

























                          3












                          $begingroup$

                          You could use the option ColorFunction with ColorFunctionScaling->False. First your conditions:



                          cond1[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)>0
                          cond2[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)<0
                          cond3[x_] := (x+4)/(3x+10)<0 && (x^2+8x+12)/(3x+10)>0


                          And your function:



                          f[x_] := (3(4+x))/(3(2-x)-16)


                          Then:



                          Plot[f[x], {x, -15, 15},
                          PlotRange -> {All, {-3, 3}},
                          ColorFunctionScaling -> False,
                          ColorFunction -> Function @ Piecewise[
                          {
                          {ColorData[97][1], cond1[#]},
                          {ColorData[97][2], cond2[#]},
                          {ColorData[97][3], cond3[#]}
                          },
                          ColorData[97][4]
                          ]
                          ]


                          enter image description here






                          share|improve this answer









                          $endgroup$


















                            3












                            $begingroup$

                            You could use the option ColorFunction with ColorFunctionScaling->False. First your conditions:



                            cond1[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)>0
                            cond2[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)<0
                            cond3[x_] := (x+4)/(3x+10)<0 && (x^2+8x+12)/(3x+10)>0


                            And your function:



                            f[x_] := (3(4+x))/(3(2-x)-16)


                            Then:



                            Plot[f[x], {x, -15, 15},
                            PlotRange -> {All, {-3, 3}},
                            ColorFunctionScaling -> False,
                            ColorFunction -> Function @ Piecewise[
                            {
                            {ColorData[97][1], cond1[#]},
                            {ColorData[97][2], cond2[#]},
                            {ColorData[97][3], cond3[#]}
                            },
                            ColorData[97][4]
                            ]
                            ]


                            enter image description here






                            share|improve this answer









                            $endgroup$
















                              3












                              3








                              3





                              $begingroup$

                              You could use the option ColorFunction with ColorFunctionScaling->False. First your conditions:



                              cond1[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)>0
                              cond2[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)<0
                              cond3[x_] := (x+4)/(3x+10)<0 && (x^2+8x+12)/(3x+10)>0


                              And your function:



                              f[x_] := (3(4+x))/(3(2-x)-16)


                              Then:



                              Plot[f[x], {x, -15, 15},
                              PlotRange -> {All, {-3, 3}},
                              ColorFunctionScaling -> False,
                              ColorFunction -> Function @ Piecewise[
                              {
                              {ColorData[97][1], cond1[#]},
                              {ColorData[97][2], cond2[#]},
                              {ColorData[97][3], cond3[#]}
                              },
                              ColorData[97][4]
                              ]
                              ]


                              enter image description here






                              share|improve this answer









                              $endgroup$



                              You could use the option ColorFunction with ColorFunctionScaling->False. First your conditions:



                              cond1[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)>0
                              cond2[x_] := (x+4)/(3x+10)>0 && (x^2+8x+12)/(3x+10)<0
                              cond3[x_] := (x+4)/(3x+10)<0 && (x^2+8x+12)/(3x+10)>0


                              And your function:



                              f[x_] := (3(4+x))/(3(2-x)-16)


                              Then:



                              Plot[f[x], {x, -15, 15},
                              PlotRange -> {All, {-3, 3}},
                              ColorFunctionScaling -> False,
                              ColorFunction -> Function @ Piecewise[
                              {
                              {ColorData[97][1], cond1[#]},
                              {ColorData[97][2], cond2[#]},
                              {ColorData[97][3], cond3[#]}
                              },
                              ColorData[97][4]
                              ]
                              ]


                              enter image description here







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered 10 hours ago









                              Carl WollCarl Woll

                              85.1k3 gold badges109 silver badges220 bronze badges




                              85.1k3 gold badges109 silver badges220 bronze badges























                                  1












                                  $begingroup$

                                  Naïve solution:



                                  f1[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)
                                  f2[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) < 0] := (3 (4 + x))/(3 (2 - x) - 16)
                                  f3[x_] /; And[(x + 4)/(3 x + 10) < 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)

                                  Plot[{f1[x], f2[x], f3[x]}, {x, -15, 15}, PlotRange -> {All, {-10, 10}}]


                                  enter image description here






                                  share|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    Naïve solution:



                                    f1[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)
                                    f2[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) < 0] := (3 (4 + x))/(3 (2 - x) - 16)
                                    f3[x_] /; And[(x + 4)/(3 x + 10) < 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)

                                    Plot[{f1[x], f2[x], f3[x]}, {x, -15, 15}, PlotRange -> {All, {-10, 10}}]


                                    enter image description here






                                    share|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      Naïve solution:



                                      f1[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)
                                      f2[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) < 0] := (3 (4 + x))/(3 (2 - x) - 16)
                                      f3[x_] /; And[(x + 4)/(3 x + 10) < 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)

                                      Plot[{f1[x], f2[x], f3[x]}, {x, -15, 15}, PlotRange -> {All, {-10, 10}}]


                                      enter image description here






                                      share|improve this answer









                                      $endgroup$



                                      Naïve solution:



                                      f1[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)
                                      f2[x_] /; And[(x + 4)/(3 x + 10) > 0, (x^2 + 8 x + 12)/(3 x + 10) < 0] := (3 (4 + x))/(3 (2 - x) - 16)
                                      f3[x_] /; And[(x + 4)/(3 x + 10) < 0, (x^2 + 8 x + 12)/(3 x + 10) > 0] := (3 (4 + x))/(3 (2 - x) - 16)

                                      Plot[{f1[x], f2[x], f3[x]}, {x, -15, 15}, PlotRange -> {All, {-10, 10}}]


                                      enter image description here







                                      share|improve this answer












                                      share|improve this answer



                                      share|improve this answer










                                      answered 11 hours ago









                                      AccidentalFourierTransformAccidentalFourierTransform

                                      5,6051 gold badge11 silver badges42 bronze badges




                                      5,6051 gold badge11 silver badges42 bronze badges























                                          1












                                          $begingroup$

                                          An alternative way to specify a color function:



                                          f[x_] := (3 (4 + x))/(3 (2 - x) - 16)
                                          cf = ColorData[97]@(1 + {1, 2}.UnitStep[{(# + 4)/(3 # + 10), (#^2 + 8 # + 12)/(3 # + 10)}]) &;

                                          Plot[f[x], {x, -15, 15},
                                          PlotRange -> {All, {-3, 3}},
                                          BaseStyle -> AbsoluteThickness[5],
                                          ColorFunction -> cf,
                                          ColorFunctionScaling -> False]


                                          enter image description here






                                          share|improve this answer









                                          $endgroup$


















                                            1












                                            $begingroup$

                                            An alternative way to specify a color function:



                                            f[x_] := (3 (4 + x))/(3 (2 - x) - 16)
                                            cf = ColorData[97]@(1 + {1, 2}.UnitStep[{(# + 4)/(3 # + 10), (#^2 + 8 # + 12)/(3 # + 10)}]) &;

                                            Plot[f[x], {x, -15, 15},
                                            PlotRange -> {All, {-3, 3}},
                                            BaseStyle -> AbsoluteThickness[5],
                                            ColorFunction -> cf,
                                            ColorFunctionScaling -> False]


                                            enter image description here






                                            share|improve this answer









                                            $endgroup$
















                                              1












                                              1








                                              1





                                              $begingroup$

                                              An alternative way to specify a color function:



                                              f[x_] := (3 (4 + x))/(3 (2 - x) - 16)
                                              cf = ColorData[97]@(1 + {1, 2}.UnitStep[{(# + 4)/(3 # + 10), (#^2 + 8 # + 12)/(3 # + 10)}]) &;

                                              Plot[f[x], {x, -15, 15},
                                              PlotRange -> {All, {-3, 3}},
                                              BaseStyle -> AbsoluteThickness[5],
                                              ColorFunction -> cf,
                                              ColorFunctionScaling -> False]


                                              enter image description here






                                              share|improve this answer









                                              $endgroup$



                                              An alternative way to specify a color function:



                                              f[x_] := (3 (4 + x))/(3 (2 - x) - 16)
                                              cf = ColorData[97]@(1 + {1, 2}.UnitStep[{(# + 4)/(3 # + 10), (#^2 + 8 # + 12)/(3 # + 10)}]) &;

                                              Plot[f[x], {x, -15, 15},
                                              PlotRange -> {All, {-3, 3}},
                                              BaseStyle -> AbsoluteThickness[5],
                                              ColorFunction -> cf,
                                              ColorFunctionScaling -> False]


                                              enter image description here







                                              share|improve this answer












                                              share|improve this answer



                                              share|improve this answer










                                              answered 1 hour ago









                                              kglrkglr

                                              200k10 gold badges229 silver badges455 bronze badges




                                              200k10 gold badges229 silver badges455 bronze badges






















                                                  Wom is a new contributor. Be nice, and check out our Code of Conduct.










                                                  draft saved

                                                  draft discarded


















                                                  Wom is a new contributor. Be nice, and check out our Code of Conduct.













                                                  Wom is a new contributor. Be nice, and check out our Code of Conduct.












                                                  Wom is a new contributor. Be nice, and check out our Code of Conduct.
















                                                  Thanks for contributing an answer to Mathematica Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f200790%2fplotting-with-different-color-for-a-single-curve%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

                                                  Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

                                                  Ciclooctatetraenă Vezi și | Bibliografie | Meniu de navigare637866text4148569-500570979m