Continuity at a point in terms of closureSet Closure Union and IntersectionContinuity of a function through...

Can a planet have a different gravitational pull depending on its location in orbit around its sun?

What is GPS' 19 year rollover and does it present a cybersecurity issue?

Pristine Bit Checking

extract characters between two commas?

If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?

Where to refill my bottle in India?

Can the Produce Flame cantrip be used to grapple, or as an unarmed strike, in the right circumstances?

Is "plugging out" electronic devices an American expression?

Information to fellow intern about hiring?

What does 'script /dev/null' do?

How to deal with fear of taking dependencies

I see my dog run

What to wear for invited talk in Canada

Are cabin dividers used to "hide" the flex of the airplane?

aging parents with no investments

How can I add custom success page

How would photo IDs work for shapeshifters?

Is it possible to make sharp wind that can cut stuff from afar?

Is a vector space a subspace of itself?

Need help identifying/translating a plaque in Tangier, Morocco

Does the average primeness of natural numbers tend to zero?

Symmetry in quantum mechanics

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

Copycat chess is back



Continuity at a point in terms of closure


Set Closure Union and IntersectionContinuity of a function through adherence of subsetsConvex set with empty interior is nowhere dense?Is preimage of closure equal to closure of preimage under continuous topological maps?How to show the logical equivalence of the following two definitions of continuity in a topological space?Given $A subseteq X$ in the discrete and the trivial topology, find closure of $A$Show two notions of dense are equivalentEquivalent definitions of continuity at a pointAbout continuity and clousureEquivalent definition of irreducible topological subspace.













4












$begingroup$


If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverline{A} implies f(x_0)inoverline{f(A)}$.



I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^{-1}(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverline{A}$, we have $Acap f^{-1}(V)neqvarnothing$. Let $xin Acap f^{-1}(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverline{f(A)}$.










share|cite|improve this question









$endgroup$

















    4












    $begingroup$


    If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverline{A} implies f(x_0)inoverline{f(A)}$.



    I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



    Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^{-1}(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverline{A}$, we have $Acap f^{-1}(V)neqvarnothing$. Let $xin Acap f^{-1}(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverline{f(A)}$.










    share|cite|improve this question









    $endgroup$















      4












      4








      4





      $begingroup$


      If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverline{A} implies f(x_0)inoverline{f(A)}$.



      I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



      Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^{-1}(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverline{A}$, we have $Acap f^{-1}(V)neqvarnothing$. Let $xin Acap f^{-1}(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverline{f(A)}$.










      share|cite|improve this question









      $endgroup$




      If $X$ and $Y$ are topological spaces, for $f:Xto Y$ to be continuous at $x_0in X$ it is necessary that $Asubseteq X land x_0inoverline{A} implies f(x_0)inoverline{f(A)}$.



      I was wondering whether it is also sufficient. A proof or counterexample would be much appreciated!



      Proof (necessity): Let $V$ be a neighborhood of $f(x_0)$. Since $f$ is continuous, $f^{-1}(V)$ is a neighborhood of $x_0$ in $X$. Since $x_0inoverline{A}$, we have $Acap f^{-1}(V)neqvarnothing$. Let $xin Acap f^{-1}(V)$. Then $f(x)in f(A)cap V$, so that $f(A)cap Vneqvarnothing$; since this holds for any neighborhood $V$ of $f(x_0)$, we have $f(x_0)inoverline{f(A)}$.







      general-topology continuity






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked yesterday









      BlondCaféBlondCafé

      364




      364






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






          share|cite|improve this answer









          $endgroup$





















            2












            $begingroup$

            It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
            We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



            Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.



            It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






            share|cite|improve this answer









            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.






                  share|cite|improve this answer









                  $endgroup$



                  Let $Vsubset Y$ be an open such that $f(x_0)in V$. If $x_0 in overline{f^{-1}(Ysetminus V)}$, then $f(x_o)in overline{f(f^{-1}(Ysetminus V))}subset overline{Ysetminus V}= Ysetminus V$, a contradiction, so $x_0 notin overline{f^{-1}(Ysetminus V)}$. Then, if $U = Xsetminus overline{f^{-1}(Ysetminus V)}$ is an open in $X$ such that $x_0in U$, and $f(U)subset V$, so $f$ is continuous in $x_0$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  guchiheguchihe

                  21918




                  21918























                      2












                      $begingroup$

                      It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                      We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                      Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.



                      It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






                      share|cite|improve this answer









                      $endgroup$


















                        2












                        $begingroup$

                        It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                        We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                        Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.



                        It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






                        share|cite|improve this answer









                        $endgroup$
















                          2












                          2








                          2





                          $begingroup$

                          It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                          We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                          Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.



                          It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.






                          share|cite|improve this answer









                          $endgroup$



                          It's also sufficient: let $y=f(x_0)$ and $y in V$, $V$ open in $Y$.
                          We want to find (for continuity at $x_0$) find some open neighbourhood $U$ of $x_0$ such that $f[U] subseteq V$.



                          Suppose that this would fail, then for every neighbourhood $U$ of $x_0$ we would have $f[U] nsubseteq V$, or equivalently $U cap f^{-1}[Ysetminus V] neq emptyset$.



                          It follows that then $x_0 in overline{f^{-1}[Ysetminus V]}$ and so the assumption on $f$ would imply that $y=f(x_0) in overline{f[f^{-1}[Ysetminus V]]}$. But $f[f^{-1}[B]] subseteq B$ for any $B$ so we'd deduce that $y in overline{Ysetminus V} = Ysetminus V$ which is nonsense. So contradiction and such a $U$ must exist.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered yesterday









                          Henno BrandsmaHenno Brandsma

                          115k349125




                          115k349125






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178435%2fcontinuity-at-a-point-in-terms-of-closure%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

                              Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

                              Ciclooctatetraenă Vezi și | Bibliografie | Meniu de navigare637866text4148569-500570979m