Find original functions from a composite function [on hold]Composite functions and one to oneFinding range of...
Why doesn't a const reference extend the life of a temporary object passed via a function?
How to move the player while also allowing forces to affect it
Is there a way to make member function NOT callable from constructor?
Lied on resume at previous job
Is Social Media Science Fiction?
How can I plot a Farey diagram?
Could Giant Ground Sloths have been a good pack animal for the ancient Mayans?
How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?
Why is my log file so massive? 22gb. I am running log backups
Is there a familial term for apples and pears?
What is the command to reset a PC without deleting any files
Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?
Is domain driven design an anti-SQL pattern?
How to manage monthly salary
Pristine Bit Checking
Why was the "bread communication" in the arena of Catching Fire left out in the movie?
Filling an area between two curves
Why airport relocation isn't done gradually?
Need help identifying/translating a plaque in Tangier, Morocco
Why do UK politicians seemingly ignore opinion polls on Brexit?
Can I legally use front facing blue light in the UK?
Are cabin dividers used to "hide" the flex of the airplane?
How could a lack of term limits lead to a "dictatorship?"
How can I add custom success page
Find original functions from a composite function [on hold]
Composite functions and one to oneFinding range of transformation of function from range of originalHow to find the original function from a definite integral.How to find composite functions upto infinity for a given function?Behaviour of composition functions of a composite functionFunctions propertiesCan't figure out this odd functionComposite function simple questionMore on periodic functions - from 100 periodic functionsfinding an outside function given composite function
$begingroup$
I have the following problem that I am stuck on:
$ f(g(x))=2^{x+5} $
and I must find $f(x)$ and $g(x)$
Can anyone help?
functions
New contributor
Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
put on hold as off-topic by Eevee Trainer, Leucippus, Lord Shark the Unknown, Robert Shore, José Carlos Santos 20 hours ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, Leucippus, Robert Shore, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.
|
show 1 more comment
$begingroup$
I have the following problem that I am stuck on:
$ f(g(x))=2^{x+5} $
and I must find $f(x)$ and $g(x)$
Can anyone help?
functions
New contributor
Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
put on hold as off-topic by Eevee Trainer, Leucippus, Lord Shark the Unknown, Robert Shore, José Carlos Santos 20 hours ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, Leucippus, Robert Shore, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.
$begingroup$
$fg$ is the product of $f,g$ or their composition?
$endgroup$
– Shubham Johri
yesterday
$begingroup$
It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
$endgroup$
– Daniel Amaral
yesterday
4
$begingroup$
You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^{x+5}$ would satisfy your requirements, but I doubt it is of any use.
$endgroup$
– Sil
yesterday
$begingroup$
In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^{nx+5},g(x)=x/n$.
$endgroup$
– Shubham Johri
yesterday
$begingroup$
Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
$endgroup$
– Daniel Amaral
yesterday
|
show 1 more comment
$begingroup$
I have the following problem that I am stuck on:
$ f(g(x))=2^{x+5} $
and I must find $f(x)$ and $g(x)$
Can anyone help?
functions
New contributor
Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$endgroup$
I have the following problem that I am stuck on:
$ f(g(x))=2^{x+5} $
and I must find $f(x)$ and $g(x)$
Can anyone help?
functions
functions
New contributor
Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
edited yesterday


Arthur
122k7122211
122k7122211
New contributor
Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
asked yesterday


Daniel AmaralDaniel Amaral
113
113
New contributor
Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
put on hold as off-topic by Eevee Trainer, Leucippus, Lord Shark the Unknown, Robert Shore, José Carlos Santos 20 hours ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, Leucippus, Robert Shore, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.
put on hold as off-topic by Eevee Trainer, Leucippus, Lord Shark the Unknown, Robert Shore, José Carlos Santos 20 hours ago
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – Eevee Trainer, Leucippus, Robert Shore, José Carlos Santos
If this question can be reworded to fit the rules in the help center, please edit the question.
$begingroup$
$fg$ is the product of $f,g$ or their composition?
$endgroup$
– Shubham Johri
yesterday
$begingroup$
It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
$endgroup$
– Daniel Amaral
yesterday
4
$begingroup$
You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^{x+5}$ would satisfy your requirements, but I doubt it is of any use.
$endgroup$
– Sil
yesterday
$begingroup$
In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^{nx+5},g(x)=x/n$.
$endgroup$
– Shubham Johri
yesterday
$begingroup$
Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
$endgroup$
– Daniel Amaral
yesterday
|
show 1 more comment
$begingroup$
$fg$ is the product of $f,g$ or their composition?
$endgroup$
– Shubham Johri
yesterday
$begingroup$
It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
$endgroup$
– Daniel Amaral
yesterday
4
$begingroup$
You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^{x+5}$ would satisfy your requirements, but I doubt it is of any use.
$endgroup$
– Sil
yesterday
$begingroup$
In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^{nx+5},g(x)=x/n$.
$endgroup$
– Shubham Johri
yesterday
$begingroup$
Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
$endgroup$
– Daniel Amaral
yesterday
$begingroup$
$fg$ is the product of $f,g$ or their composition?
$endgroup$
– Shubham Johri
yesterday
$begingroup$
$fg$ is the product of $f,g$ or their composition?
$endgroup$
– Shubham Johri
yesterday
$begingroup$
It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
$endgroup$
– Daniel Amaral
yesterday
$begingroup$
It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
$endgroup$
– Daniel Amaral
yesterday
4
4
$begingroup$
You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^{x+5}$ would satisfy your requirements, but I doubt it is of any use.
$endgroup$
– Sil
yesterday
$begingroup$
You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^{x+5}$ would satisfy your requirements, but I doubt it is of any use.
$endgroup$
– Sil
yesterday
$begingroup$
In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^{nx+5},g(x)=x/n$.
$endgroup$
– Shubham Johri
yesterday
$begingroup$
In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^{nx+5},g(x)=x/n$.
$endgroup$
– Shubham Johri
yesterday
$begingroup$
Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
$endgroup$
– Daniel Amaral
yesterday
$begingroup$
Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
$endgroup$
– Daniel Amaral
yesterday
|
show 1 more comment
2 Answers
2
active
oldest
votes
$begingroup$
Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^{x+5}$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^{x+t}, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^{2x+10}, f(x)=sqrt{x}$, etc.
$endgroup$
add a comment |
$begingroup$
While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^{text{something involving }x}$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.
If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^{g(x)},$ so we'd need $g(x)=x+5.$
On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^{x+5}$? Well, remember your exponent rules: $2^{x+5}=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$
$endgroup$
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^{x+5}$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^{x+t}, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^{2x+10}, f(x)=sqrt{x}$, etc.
$endgroup$
add a comment |
$begingroup$
Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^{x+5}$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^{x+t}, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^{2x+10}, f(x)=sqrt{x}$, etc.
$endgroup$
add a comment |
$begingroup$
Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^{x+5}$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^{x+t}, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^{2x+10}, f(x)=sqrt{x}$, etc.
$endgroup$
Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^{x+5}$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^{x+t}, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^{2x+10}, f(x)=sqrt{x}$, etc.
answered yesterday


Yuval GatYuval Gat
9261213
9261213
add a comment |
add a comment |
$begingroup$
While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^{text{something involving }x}$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.
If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^{g(x)},$ so we'd need $g(x)=x+5.$
On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^{x+5}$? Well, remember your exponent rules: $2^{x+5}=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$
$endgroup$
add a comment |
$begingroup$
While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^{text{something involving }x}$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.
If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^{g(x)},$ so we'd need $g(x)=x+5.$
On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^{x+5}$? Well, remember your exponent rules: $2^{x+5}=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$
$endgroup$
add a comment |
$begingroup$
While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^{text{something involving }x}$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.
If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^{g(x)},$ so we'd need $g(x)=x+5.$
On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^{x+5}$? Well, remember your exponent rules: $2^{x+5}=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$
$endgroup$
While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^{text{something involving }x}$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.
If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^{g(x)},$ so we'd need $g(x)=x+5.$
On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^{x+5}$? Well, remember your exponent rules: $2^{x+5}=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$
answered yesterday
Cameron BuieCameron Buie
86.8k773161
86.8k773161
add a comment |
add a comment |
$begingroup$
$fg$ is the product of $f,g$ or their composition?
$endgroup$
– Shubham Johri
yesterday
$begingroup$
It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
$endgroup$
– Daniel Amaral
yesterday
4
$begingroup$
You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^{x+5}$ would satisfy your requirements, but I doubt it is of any use.
$endgroup$
– Sil
yesterday
$begingroup$
In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^{nx+5},g(x)=x/n$.
$endgroup$
– Shubham Johri
yesterday
$begingroup$
Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
$endgroup$
– Daniel Amaral
yesterday