Examples of topos that are not ordinary spacesAre all coproducts of 1 in a topos distinct ?In which...
Examples of topos that are not ordinary spaces
Are all coproducts of 1 in a topos distinct ?In which situations can one see that topological spaces are ill-behaved from the homotopical viewpoint?Example of a topos that violates countable choiceIs there a category of topological-like spaces that forms a topos?Are there non-categorical notions in topos theory?(Co)complete topoi that are not Grothendieck?Examples of $(infty,1)$-topoi that are not given as sheaves on a Grothendieck topologyAre semisimplicial hypercoverings in a hypercomplete $infty$-topos effective?
$begingroup$
In [SGA6] we find:
Mais nous lui conseillons néanmoins, de préférence, de s'assimiler le langage des topos, qui fournit un principe d'unification extrêmement commode.
Lets motivate this advice following some examples of topos that are not “ordinary” spaces:
Comme autres exemples remarquables de topos qui ne sont pas des espaces ordinaires, et pour lesquels il ne semble pas y avoir non plus de substitut satisfaisant en termes des notions "admises", je signalerai : les topos quotients d’un espace topologique par une relation d’équivalence locale (par exemple des feuilletages de variétés, auquel cas le topos quotient est même une "multiplicité" i.e. est localement une variété) ; les topos "classifiants" pour à peu près n’importe quelle espèce de structure mathématique (tout au moins celles "s’exprimant en termes de limites projectives finies et de limites inductives quelconques"). Quand on prend une structure de "variété" (topologique, différentiable, analytique réelle ou complexe, de Nash, etc. . . ou même schématique lisse sur une base donnée) on trouve dans chaque cas un topos particulièrement alléchant, qui mérite le nom de "variété universelle" (de l’espèce envisagée). Ses invariants homotopiques (et notamment sa cohomologie, qui mérite le nom de "cohomologie classifiante" pour l’espèce de variété envisagée) devraient être étudiés et connus depuis longtemps, mais pour le moment ça n’en prend nullement le chemin...
[ReS]
What are some other examples of topoi that are not “ordinary” spaces?
[ReS] Récoltes et Semailles, A Grothendieck
[SGA6] SGA6 Théorie des intersections et théorème de Riemann-Roch, 1966–1967. Séminaire de Géométrie Algébrique du Bois Marie
at.algebraic-topology ct.category-theory homological-algebra topos-theory infinity-topos-theory
New contributor
$endgroup$
|
show 1 more comment
$begingroup$
In [SGA6] we find:
Mais nous lui conseillons néanmoins, de préférence, de s'assimiler le langage des topos, qui fournit un principe d'unification extrêmement commode.
Lets motivate this advice following some examples of topos that are not “ordinary” spaces:
Comme autres exemples remarquables de topos qui ne sont pas des espaces ordinaires, et pour lesquels il ne semble pas y avoir non plus de substitut satisfaisant en termes des notions "admises", je signalerai : les topos quotients d’un espace topologique par une relation d’équivalence locale (par exemple des feuilletages de variétés, auquel cas le topos quotient est même une "multiplicité" i.e. est localement une variété) ; les topos "classifiants" pour à peu près n’importe quelle espèce de structure mathématique (tout au moins celles "s’exprimant en termes de limites projectives finies et de limites inductives quelconques"). Quand on prend une structure de "variété" (topologique, différentiable, analytique réelle ou complexe, de Nash, etc. . . ou même schématique lisse sur une base donnée) on trouve dans chaque cas un topos particulièrement alléchant, qui mérite le nom de "variété universelle" (de l’espèce envisagée). Ses invariants homotopiques (et notamment sa cohomologie, qui mérite le nom de "cohomologie classifiante" pour l’espèce de variété envisagée) devraient être étudiés et connus depuis longtemps, mais pour le moment ça n’en prend nullement le chemin...
[ReS]
What are some other examples of topoi that are not “ordinary” spaces?
[ReS] Récoltes et Semailles, A Grothendieck
[SGA6] SGA6 Théorie des intersections et théorème de Riemann-Roch, 1966–1967. Séminaire de Géométrie Algébrique du Bois Marie
at.algebraic-topology ct.category-theory homological-algebra topos-theory infinity-topos-theory
New contributor
$endgroup$
$begingroup$
Could you make your references more readable? See here how to improve citations: meta.mathoverflow.net/questions/1485/…
$endgroup$
– András Bátkai
yesterday
$begingroup$
@AndrásBátkai I think anyone familiar with algebraic geometry (or at least Grothendieck's version of it) would know what these two references are and where to look for them...
$endgroup$
– Najib Idrissi
yesterday
3
$begingroup$
@NajibIdrissi: and why does it justify that OP does not format the citations correctly?
$endgroup$
– András Bátkai
yesterday
1
$begingroup$
I find this question poorly motivated. If you just want to know more about various kinds of toposes, there are many standard resources out there. Did you consult the nLab page on "topos", for instance?
$endgroup$
– Andrej Bauer
yesterday
$begingroup$
Which toposes are not ordinary spaces? Almost all of them. More or less, the ones which "are spaces" are called localic toposes; they do play an important role however (see for example An Extension of the Galois Theory of Grothendieck, which goes into the details of Dmitri's answer).
$endgroup$
– Todd Trimble♦
yesterday
|
show 1 more comment
$begingroup$
In [SGA6] we find:
Mais nous lui conseillons néanmoins, de préférence, de s'assimiler le langage des topos, qui fournit un principe d'unification extrêmement commode.
Lets motivate this advice following some examples of topos that are not “ordinary” spaces:
Comme autres exemples remarquables de topos qui ne sont pas des espaces ordinaires, et pour lesquels il ne semble pas y avoir non plus de substitut satisfaisant en termes des notions "admises", je signalerai : les topos quotients d’un espace topologique par une relation d’équivalence locale (par exemple des feuilletages de variétés, auquel cas le topos quotient est même une "multiplicité" i.e. est localement une variété) ; les topos "classifiants" pour à peu près n’importe quelle espèce de structure mathématique (tout au moins celles "s’exprimant en termes de limites projectives finies et de limites inductives quelconques"). Quand on prend une structure de "variété" (topologique, différentiable, analytique réelle ou complexe, de Nash, etc. . . ou même schématique lisse sur une base donnée) on trouve dans chaque cas un topos particulièrement alléchant, qui mérite le nom de "variété universelle" (de l’espèce envisagée). Ses invariants homotopiques (et notamment sa cohomologie, qui mérite le nom de "cohomologie classifiante" pour l’espèce de variété envisagée) devraient être étudiés et connus depuis longtemps, mais pour le moment ça n’en prend nullement le chemin...
[ReS]
What are some other examples of topoi that are not “ordinary” spaces?
[ReS] Récoltes et Semailles, A Grothendieck
[SGA6] SGA6 Théorie des intersections et théorème de Riemann-Roch, 1966–1967. Séminaire de Géométrie Algébrique du Bois Marie
at.algebraic-topology ct.category-theory homological-algebra topos-theory infinity-topos-theory
New contributor
$endgroup$
In [SGA6] we find:
Mais nous lui conseillons néanmoins, de préférence, de s'assimiler le langage des topos, qui fournit un principe d'unification extrêmement commode.
Lets motivate this advice following some examples of topos that are not “ordinary” spaces:
Comme autres exemples remarquables de topos qui ne sont pas des espaces ordinaires, et pour lesquels il ne semble pas y avoir non plus de substitut satisfaisant en termes des notions "admises", je signalerai : les topos quotients d’un espace topologique par une relation d’équivalence locale (par exemple des feuilletages de variétés, auquel cas le topos quotient est même une "multiplicité" i.e. est localement une variété) ; les topos "classifiants" pour à peu près n’importe quelle espèce de structure mathématique (tout au moins celles "s’exprimant en termes de limites projectives finies et de limites inductives quelconques"). Quand on prend une structure de "variété" (topologique, différentiable, analytique réelle ou complexe, de Nash, etc. . . ou même schématique lisse sur une base donnée) on trouve dans chaque cas un topos particulièrement alléchant, qui mérite le nom de "variété universelle" (de l’espèce envisagée). Ses invariants homotopiques (et notamment sa cohomologie, qui mérite le nom de "cohomologie classifiante" pour l’espèce de variété envisagée) devraient être étudiés et connus depuis longtemps, mais pour le moment ça n’en prend nullement le chemin...
[ReS]
What are some other examples of topoi that are not “ordinary” spaces?
[ReS] Récoltes et Semailles, A Grothendieck
[SGA6] SGA6 Théorie des intersections et théorème de Riemann-Roch, 1966–1967. Séminaire de Géométrie Algébrique du Bois Marie
at.algebraic-topology ct.category-theory homological-algebra topos-theory infinity-topos-theory
at.algebraic-topology ct.category-theory homological-algebra topos-theory infinity-topos-theory
New contributor
New contributor
edited yesterday
M Carmona
New contributor
asked yesterday
M CarmonaM Carmona
415 bronze badges
415 bronze badges
New contributor
New contributor
$begingroup$
Could you make your references more readable? See here how to improve citations: meta.mathoverflow.net/questions/1485/…
$endgroup$
– András Bátkai
yesterday
$begingroup$
@AndrásBátkai I think anyone familiar with algebraic geometry (or at least Grothendieck's version of it) would know what these two references are and where to look for them...
$endgroup$
– Najib Idrissi
yesterday
3
$begingroup$
@NajibIdrissi: and why does it justify that OP does not format the citations correctly?
$endgroup$
– András Bátkai
yesterday
1
$begingroup$
I find this question poorly motivated. If you just want to know more about various kinds of toposes, there are many standard resources out there. Did you consult the nLab page on "topos", for instance?
$endgroup$
– Andrej Bauer
yesterday
$begingroup$
Which toposes are not ordinary spaces? Almost all of them. More or less, the ones which "are spaces" are called localic toposes; they do play an important role however (see for example An Extension of the Galois Theory of Grothendieck, which goes into the details of Dmitri's answer).
$endgroup$
– Todd Trimble♦
yesterday
|
show 1 more comment
$begingroup$
Could you make your references more readable? See here how to improve citations: meta.mathoverflow.net/questions/1485/…
$endgroup$
– András Bátkai
yesterday
$begingroup$
@AndrásBátkai I think anyone familiar with algebraic geometry (or at least Grothendieck's version of it) would know what these two references are and where to look for them...
$endgroup$
– Najib Idrissi
yesterday
3
$begingroup$
@NajibIdrissi: and why does it justify that OP does not format the citations correctly?
$endgroup$
– András Bátkai
yesterday
1
$begingroup$
I find this question poorly motivated. If you just want to know more about various kinds of toposes, there are many standard resources out there. Did you consult the nLab page on "topos", for instance?
$endgroup$
– Andrej Bauer
yesterday
$begingroup$
Which toposes are not ordinary spaces? Almost all of them. More or less, the ones which "are spaces" are called localic toposes; they do play an important role however (see for example An Extension of the Galois Theory of Grothendieck, which goes into the details of Dmitri's answer).
$endgroup$
– Todd Trimble♦
yesterday
$begingroup$
Could you make your references more readable? See here how to improve citations: meta.mathoverflow.net/questions/1485/…
$endgroup$
– András Bátkai
yesterday
$begingroup$
Could you make your references more readable? See here how to improve citations: meta.mathoverflow.net/questions/1485/…
$endgroup$
– András Bátkai
yesterday
$begingroup$
@AndrásBátkai I think anyone familiar with algebraic geometry (or at least Grothendieck's version of it) would know what these two references are and where to look for them...
$endgroup$
– Najib Idrissi
yesterday
$begingroup$
@AndrásBátkai I think anyone familiar with algebraic geometry (or at least Grothendieck's version of it) would know what these two references are and where to look for them...
$endgroup$
– Najib Idrissi
yesterday
3
3
$begingroup$
@NajibIdrissi: and why does it justify that OP does not format the citations correctly?
$endgroup$
– András Bátkai
yesterday
$begingroup$
@NajibIdrissi: and why does it justify that OP does not format the citations correctly?
$endgroup$
– András Bátkai
yesterday
1
1
$begingroup$
I find this question poorly motivated. If you just want to know more about various kinds of toposes, there are many standard resources out there. Did you consult the nLab page on "topos", for instance?
$endgroup$
– Andrej Bauer
yesterday
$begingroup$
I find this question poorly motivated. If you just want to know more about various kinds of toposes, there are many standard resources out there. Did you consult the nLab page on "topos", for instance?
$endgroup$
– Andrej Bauer
yesterday
$begingroup$
Which toposes are not ordinary spaces? Almost all of them. More or less, the ones which "are spaces" are called localic toposes; they do play an important role however (see for example An Extension of the Galois Theory of Grothendieck, which goes into the details of Dmitri's answer).
$endgroup$
– Todd Trimble♦
yesterday
$begingroup$
Which toposes are not ordinary spaces? Almost all of them. More or less, the ones which "are spaces" are called localic toposes; they do play an important role however (see for example An Extension of the Galois Theory of Grothendieck, which goes into the details of Dmitri's answer).
$endgroup$
– Todd Trimble♦
yesterday
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
The bicategory of Grothendieck toposes is equivalent to the bicategory
of localic groupoids, with appropriately defined 1-morphisms and 2-morphisms.
"Ordinary spaces" are topological spaces, or, perhaps, locales.
There is a forgetful functor from the category of locales
to the above bicategory of localic groupoids
that sends a locale L to the groupoid that has L as its space of objects and morphisms and identity maps as structure maps.
Thus, any localic groupoid that is not equivalent to a locale
gives rise to such a topos.
For instance, one can take a localic group G (e.g., a locally compact Hausdorff topological group) and consider the delooping groupoid BG.
The topos of sheaves of sets over BG is an example of a topos that does not
come from an ordinary space.
Foliation groupoids and quotient groupoids of nonfree actions
of groups on spaces provide additional examples.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
M Carmona is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f339023%2fexamples-of-topos-that-are-not-ordinary-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The bicategory of Grothendieck toposes is equivalent to the bicategory
of localic groupoids, with appropriately defined 1-morphisms and 2-morphisms.
"Ordinary spaces" are topological spaces, or, perhaps, locales.
There is a forgetful functor from the category of locales
to the above bicategory of localic groupoids
that sends a locale L to the groupoid that has L as its space of objects and morphisms and identity maps as structure maps.
Thus, any localic groupoid that is not equivalent to a locale
gives rise to such a topos.
For instance, one can take a localic group G (e.g., a locally compact Hausdorff topological group) and consider the delooping groupoid BG.
The topos of sheaves of sets over BG is an example of a topos that does not
come from an ordinary space.
Foliation groupoids and quotient groupoids of nonfree actions
of groups on spaces provide additional examples.
$endgroup$
add a comment |
$begingroup$
The bicategory of Grothendieck toposes is equivalent to the bicategory
of localic groupoids, with appropriately defined 1-morphisms and 2-morphisms.
"Ordinary spaces" are topological spaces, or, perhaps, locales.
There is a forgetful functor from the category of locales
to the above bicategory of localic groupoids
that sends a locale L to the groupoid that has L as its space of objects and morphisms and identity maps as structure maps.
Thus, any localic groupoid that is not equivalent to a locale
gives rise to such a topos.
For instance, one can take a localic group G (e.g., a locally compact Hausdorff topological group) and consider the delooping groupoid BG.
The topos of sheaves of sets over BG is an example of a topos that does not
come from an ordinary space.
Foliation groupoids and quotient groupoids of nonfree actions
of groups on spaces provide additional examples.
$endgroup$
add a comment |
$begingroup$
The bicategory of Grothendieck toposes is equivalent to the bicategory
of localic groupoids, with appropriately defined 1-morphisms and 2-morphisms.
"Ordinary spaces" are topological spaces, or, perhaps, locales.
There is a forgetful functor from the category of locales
to the above bicategory of localic groupoids
that sends a locale L to the groupoid that has L as its space of objects and morphisms and identity maps as structure maps.
Thus, any localic groupoid that is not equivalent to a locale
gives rise to such a topos.
For instance, one can take a localic group G (e.g., a locally compact Hausdorff topological group) and consider the delooping groupoid BG.
The topos of sheaves of sets over BG is an example of a topos that does not
come from an ordinary space.
Foliation groupoids and quotient groupoids of nonfree actions
of groups on spaces provide additional examples.
$endgroup$
The bicategory of Grothendieck toposes is equivalent to the bicategory
of localic groupoids, with appropriately defined 1-morphisms and 2-morphisms.
"Ordinary spaces" are topological spaces, or, perhaps, locales.
There is a forgetful functor from the category of locales
to the above bicategory of localic groupoids
that sends a locale L to the groupoid that has L as its space of objects and morphisms and identity maps as structure maps.
Thus, any localic groupoid that is not equivalent to a locale
gives rise to such a topos.
For instance, one can take a localic group G (e.g., a locally compact Hausdorff topological group) and consider the delooping groupoid BG.
The topos of sheaves of sets over BG is an example of a topos that does not
come from an ordinary space.
Foliation groupoids and quotient groupoids of nonfree actions
of groups on spaces provide additional examples.
answered yesterday
Dmitri PavlovDmitri Pavlov
14.2k4 gold badges35 silver badges87 bronze badges
14.2k4 gold badges35 silver badges87 bronze badges
add a comment |
add a comment |
M Carmona is a new contributor. Be nice, and check out our Code of Conduct.
M Carmona is a new contributor. Be nice, and check out our Code of Conduct.
M Carmona is a new contributor. Be nice, and check out our Code of Conduct.
M Carmona is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f339023%2fexamples-of-topos-that-are-not-ordinary-spaces%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Could you make your references more readable? See here how to improve citations: meta.mathoverflow.net/questions/1485/…
$endgroup$
– András Bátkai
yesterday
$begingroup$
@AndrásBátkai I think anyone familiar with algebraic geometry (or at least Grothendieck's version of it) would know what these two references are and where to look for them...
$endgroup$
– Najib Idrissi
yesterday
3
$begingroup$
@NajibIdrissi: and why does it justify that OP does not format the citations correctly?
$endgroup$
– András Bátkai
yesterday
1
$begingroup$
I find this question poorly motivated. If you just want to know more about various kinds of toposes, there are many standard resources out there. Did you consult the nLab page on "topos", for instance?
$endgroup$
– Andrej Bauer
yesterday
$begingroup$
Which toposes are not ordinary spaces? Almost all of them. More or less, the ones which "are spaces" are called localic toposes; they do play an important role however (see for example An Extension of the Galois Theory of Grothendieck, which goes into the details of Dmitri's answer).
$endgroup$
– Todd Trimble♦
yesterday