Biased dice probability question Announcing the arrival of Valued Associate #679: Cesar...

How does modal jazz use chord progressions?

Unexpected result with right shift after bitwise negation

New Order #5: where Fibonacci and Beatty meet at Wythoff

What do you call the holes in a flute?

What is the electric potential inside a point charge?

How to colour the US map with Yellow, Green, Red and Blue to minimize the number of states with the colour of Green

Writing Thesis: Copying from published papers

Is there a service that would inform me whenever a new direct route is scheduled from a given airport?

Complexity of many constant time steps with occasional logarithmic steps

How is simplicity better than precision and clarity in prose?

How to say that you spent the night with someone, you were only sleeping and nothing else?

How do I automatically answer y in bash script?

Statistical model of ligand substitution

Passing functions in C++

Unable to start mainnet node docker container

Determine whether f is a function, an injection, a surjection

What can I do if my MacBook isn’t charging but already ran out?

Using "nakedly" instead of "with nothing on"

How do I keep my slimes from escaping their pens?

How can players take actions together that are impossible otherwise?

Notation for two qubit composite product state

Did the new image of black hole confirm the general theory of relativity?

How should I respond to a player wanting to catch a sword between their hands?

If A makes B more likely then B makes A more likely"



Biased dice probability question



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Probability of dice thrownDice and probabilityDetermine whether the dice is biased based on 10 rollsProbability of events with biased diceProbability of biased diceProbability on biased diceProbability of rolling 2 and 3 numbers in a sequence when rolling 3, 6 sided diceDice probability helpProbability of an “at least” QuestionProbability of biased die.












3












$begingroup$


A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac{1}{6}$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)










share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
    $endgroup$
    – Lorenzo
    56 mins ago
















3












$begingroup$


A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac{1}{6}$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)










share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$












  • $begingroup$
    Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
    $endgroup$
    – Lorenzo
    56 mins ago














3












3








3


2



$begingroup$


A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac{1}{6}$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)










share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




A biased six sided dice is rolled twice. Show that the probability that the two results are the same is at least $frac{1}{6}$.
(Hint: $(p_1 − a)^2 + . . . + (p_6 − a)^2 ≥ 0$ and choose suitable
$p_1, . . . , p_6$, a.)







probability






share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









mathpadawan

2,019422




2,019422






New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 1 hour ago









mandymandy

191




191




New contributor




mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






mandy is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
    $endgroup$
    – Lorenzo
    56 mins ago


















  • $begingroup$
    Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
    $endgroup$
    – Lorenzo
    56 mins ago
















$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
56 mins ago




$begingroup$
Hint: First try to show that if a coin is flipped twice, the probability that the two results are the same is at least $1/2$. This will help you figure out what to choose as $a$.
$endgroup$
– Lorenzo
56 mins ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

Let $p_i$ be the probability of rolling $i$. Then $sum_{i=1}^6 p_i = 1$.



By Cauchy-Schwarz inequality,



$$begin{align*}
left(sum_{i=1}^6 1^2right) left(sum_{i=1}^6 p_i^2right) &ge
left(sum_{i=1}^6 1p_iright)^2\
6left(sum_{i=1}^6 p_i^2right) &ge 1\
sum_{i=1}^6 p_i^2 &ge frac16end{align*}$$



Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    mandy is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188165%2fbiased-dice-probability-question%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Let $p_i$ be the probability of rolling $i$. Then $sum_{i=1}^6 p_i = 1$.



    By Cauchy-Schwarz inequality,



    $$begin{align*}
    left(sum_{i=1}^6 1^2right) left(sum_{i=1}^6 p_i^2right) &ge
    left(sum_{i=1}^6 1p_iright)^2\
    6left(sum_{i=1}^6 p_i^2right) &ge 1\
    sum_{i=1}^6 p_i^2 &ge frac16end{align*}$$



    Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.






    share|cite|improve this answer









    $endgroup$


















      4












      $begingroup$

      Let $p_i$ be the probability of rolling $i$. Then $sum_{i=1}^6 p_i = 1$.



      By Cauchy-Schwarz inequality,



      $$begin{align*}
      left(sum_{i=1}^6 1^2right) left(sum_{i=1}^6 p_i^2right) &ge
      left(sum_{i=1}^6 1p_iright)^2\
      6left(sum_{i=1}^6 p_i^2right) &ge 1\
      sum_{i=1}^6 p_i^2 &ge frac16end{align*}$$



      Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.






      share|cite|improve this answer









      $endgroup$
















        4












        4








        4





        $begingroup$

        Let $p_i$ be the probability of rolling $i$. Then $sum_{i=1}^6 p_i = 1$.



        By Cauchy-Schwarz inequality,



        $$begin{align*}
        left(sum_{i=1}^6 1^2right) left(sum_{i=1}^6 p_i^2right) &ge
        left(sum_{i=1}^6 1p_iright)^2\
        6left(sum_{i=1}^6 p_i^2right) &ge 1\
        sum_{i=1}^6 p_i^2 &ge frac16end{align*}$$



        Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.






        share|cite|improve this answer









        $endgroup$



        Let $p_i$ be the probability of rolling $i$. Then $sum_{i=1}^6 p_i = 1$.



        By Cauchy-Schwarz inequality,



        $$begin{align*}
        left(sum_{i=1}^6 1^2right) left(sum_{i=1}^6 p_i^2right) &ge
        left(sum_{i=1}^6 1p_iright)^2\
        6left(sum_{i=1}^6 p_i^2right) &ge 1\
        sum_{i=1}^6 p_i^2 &ge frac16end{align*}$$



        Equality holds when all the $p_i$ are the same, i.e. when the die is unbiased.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 55 mins ago









        peterwhypeterwhy

        12.3k21229




        12.3k21229






















            mandy is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            mandy is a new contributor. Be nice, and check out our Code of Conduct.













            mandy is a new contributor. Be nice, and check out our Code of Conduct.












            mandy is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188165%2fbiased-dice-probability-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

            Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

            Nicolae Petrescu-Găină Cuprins Biografie | Opera | In memoriam | Varia | Controverse, incertitudini...