Why is the change of basis formula counter-intuitive? [See details] Announcing the arrival of...

Nose gear failure in single prop aircraft: belly landing or nose-gear up landing?

what is the log of the PDF for a Normal Distribution?

Tannaka duality for semisimple groups

What order were files/directories output in dir?

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

Relating to the President and obstruction, were Mueller's conclusions preordained?

Central Vacuuming: Is it worth it, and how does it compare to normal vacuuming?

How to ternary Plot3D a function

If Windows 7 doesn't support WSL, then what is "Subsystem for UNIX-based Applications"?

Trying to understand entropy as a novice in thermodynamics

Why complex landing gears are used instead of simple,reliability and light weight muscle wire or shape memory alloys?

Does the Black Tentacles spell do damage twice at the start of turn to an already restrained creature?

Printing attributes of selection in ArcPy?

What initially awakened the Balrog?

Is openssl rand command cryptographically secure?

Should a wizard buy fine inks every time he want to copy spells into his spellbook?

Where is the Next Backup Size entry on iOS 12?

Why do early math courses focus on the cross sections of a cone and not on other 3D objects?

NERDTreeMenu Remapping

One-one communication

What is the "studentd" process?

Does the Mueller report show a conspiracy between Russia and the Trump Campaign?

My mentor says to set image to Fine instead of RAW — how is this different from JPG?

How to write capital alpha?



Why is the change of basis formula counter-intuitive? [See details]



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Change of basis = similarity?Change of Basis vs. Linear TransformationMatrices for change of basis linear transformationsConfusion about change of basis matrixIntuitive understanding of the $BAB^{-1}$ formula for changing basis in linear transformations.Standard Basis and Change of Basis MatrixStandard matrix linear transformation - change of basisHard change of basis/ linear transformation problemChange of basis difference between linear and bilinear transformationChange of basis of the kernel of a rectangular matrix












2












$begingroup$


The formula of change of basis $[T]_{B'} = P_{B'leftarrow B}[T]_{B}P_{Bleftarrow B'}$.



I don't understand why you need $P_{Bleftarrow B'}$? It seems to me that if you have the transformation expressed in $B$ already with $[T]_{B}$ you just need to translate to $B'$ by using $P_{B'leftarrow B}$ to get $[T]_{B'}$ rendering $P_{Bleftarrow B'}$ as useless. Can someone explain what I am missing here?










share|cite|improve this question











$endgroup$












  • $begingroup$
    @littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
    $endgroup$
    – Dr.Stone
    5 hours ago


















2












$begingroup$


The formula of change of basis $[T]_{B'} = P_{B'leftarrow B}[T]_{B}P_{Bleftarrow B'}$.



I don't understand why you need $P_{Bleftarrow B'}$? It seems to me that if you have the transformation expressed in $B$ already with $[T]_{B}$ you just need to translate to $B'$ by using $P_{B'leftarrow B}$ to get $[T]_{B'}$ rendering $P_{Bleftarrow B'}$ as useless. Can someone explain what I am missing here?










share|cite|improve this question











$endgroup$












  • $begingroup$
    @littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
    $endgroup$
    – Dr.Stone
    5 hours ago
















2












2








2





$begingroup$


The formula of change of basis $[T]_{B'} = P_{B'leftarrow B}[T]_{B}P_{Bleftarrow B'}$.



I don't understand why you need $P_{Bleftarrow B'}$? It seems to me that if you have the transformation expressed in $B$ already with $[T]_{B}$ you just need to translate to $B'$ by using $P_{B'leftarrow B}$ to get $[T]_{B'}$ rendering $P_{Bleftarrow B'}$ as useless. Can someone explain what I am missing here?










share|cite|improve this question











$endgroup$




The formula of change of basis $[T]_{B'} = P_{B'leftarrow B}[T]_{B}P_{Bleftarrow B'}$.



I don't understand why you need $P_{Bleftarrow B'}$? It seems to me that if you have the transformation expressed in $B$ already with $[T]_{B}$ you just need to translate to $B'$ by using $P_{B'leftarrow B}$ to get $[T]_{B'}$ rendering $P_{Bleftarrow B'}$ as useless. Can someone explain what I am missing here?







linear-algebra






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Carmeister

2,8792924




2,8792924










asked 5 hours ago









Dr.StoneDr.Stone

676




676












  • $begingroup$
    @littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
    $endgroup$
    – Dr.Stone
    5 hours ago




















  • $begingroup$
    @littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
    $endgroup$
    – Dr.Stone
    5 hours ago


















$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
5 hours ago






$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
5 hours ago












2 Answers
2






active

oldest

votes


















3












$begingroup$

Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Write $B={e_1,...,e_n}, B' ={e_1',...,e_n'}$



    If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



    So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_{B'to B}(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_{Bto B'}$ comes from on the left. This gives the formula






    share|cite|improve this answer









    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195162%2fwhy-is-the-change-of-basis-formula-counter-intuitive-see-details%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.






      share|cite|improve this answer









      $endgroup$


















        3












        $begingroup$

        Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.






        share|cite|improve this answer









        $endgroup$
















          3












          3








          3





          $begingroup$

          Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.






          share|cite|improve this answer









          $endgroup$



          Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 5 hours ago









          littleOlittleO

          30.6k649111




          30.6k649111























              2












              $begingroup$

              Write $B={e_1,...,e_n}, B' ={e_1',...,e_n'}$



              If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



              So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_{B'to B}(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_{Bto B'}$ comes from on the left. This gives the formula






              share|cite|improve this answer









              $endgroup$


















                2












                $begingroup$

                Write $B={e_1,...,e_n}, B' ={e_1',...,e_n'}$



                If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



                So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_{B'to B}(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_{Bto B'}$ comes from on the left. This gives the formula






                share|cite|improve this answer









                $endgroup$
















                  2












                  2








                  2





                  $begingroup$

                  Write $B={e_1,...,e_n}, B' ={e_1',...,e_n'}$



                  If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



                  So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_{B'to B}(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_{Bto B'}$ comes from on the left. This gives the formula






                  share|cite|improve this answer









                  $endgroup$



                  Write $B={e_1,...,e_n}, B' ={e_1',...,e_n'}$



                  If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.



                  So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_{B'to B}(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_{Bto B'}$ comes from on the left. This gives the formula







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 5 hours ago









                  MaxMax

                  16.6k11144




                  16.6k11144






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195162%2fwhy-is-the-change-of-basis-formula-counter-intuitive-see-details%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

                      Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

                      Nicolae Petrescu-Găină Cuprins Biografie | Opera | In memoriam | Varia | Controverse, incertitudini...