How to compute $int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$Compute $int_0^pifrac{cos nx}{a^2-2abcos x+b^2},...
Output with the same length always
A reccomended structured approach to self studying music theory for songwriting
Designing a prison for a telekinetic race
Does the Temple of the Gods spell nullify critical hits?
global variant of csname…endcsname
The Lucky House
What happened after the end of the Truman Show?
Do I need to start off my book by describing the character's "normal world"?
Why don't modern jet engines use forced exhaust mixing?
How to change minor radius of a torus in blender 2.8
When does The Truman Show take place?
Parse a simple key=value config file in C
Why does this image of cyclocarbon look like a nonagon?
The Roommates' Dilemma
How does the illumination of the sky from the sun compare to that of the moon?
Spongy green glass found on graves
Why should P.I be willing to write strong LOR even if that means losing a undergraduate from his/her lab?
What should I do with the stock I own if I anticipate there will be a recession?
What allows us to use imaginary numbers?
Why should I pay for an SSL certificate?
Output the list of musical notes
What is the opposite of "hunger level"?
Polar contour plot in Mathematica?
Has there ever been a truly bilingual country prior to the contemporary period?
How to compute $int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$
Compute $int_0^pifrac{cos nx}{a^2-2abcos x+b^2}, dx$Proof that $int_0^{2pi}sin nx,dx=int_0^{2pi}cos nx,dx=0$How to find $int_0^{pi}frac{sin ntheta}{costheta-cosalpha}dtheta$Integrating $displaystyleint_0^{pi/2} {sin^2x over 1 + sin xcos x}dx$Prove that $int_0^frac{pi}{2}cos^mx sin^mxdx=2^{-m}int_0^frac{pi}{2}cos^mxdx$Evaluate $int_0^{frac{pi}{2}}frac{sin xcos x}{sin^4x+cos^4x}dx$Tricky real integral: $int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi$$I =int_0^{2pi} ((e^{|sin x|} cos x)/(1+e^{tan x})) ,dx$
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
$begingroup$
$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$$
With some bit of tinkering with Desmos, I've got to know that the answer is ${pi over 2} a^{n-1}$.
But can you help prove that?
Sorry for the typo. I meant $sin nx$ instead of $cos nx$.
integration definite-integrals
$endgroup$
|
show 1 more comment
$begingroup$
$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$$
With some bit of tinkering with Desmos, I've got to know that the answer is ${pi over 2} a^{n-1}$.
But can you help prove that?
Sorry for the typo. I meant $sin nx$ instead of $cos nx$.
integration definite-integrals
$endgroup$
4
$begingroup$
So for $n=1$, you expect an answer independent of $a$...?
$endgroup$
– StackTD
2 days ago
2
$begingroup$
I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
$endgroup$
– Kavi Rama Murthy
2 days ago
$begingroup$
desmos.com/calculator/zowwz6h8mo Check this out.
$endgroup$
– Atom
2 days ago
$begingroup$
@Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
$endgroup$
– Dr Zafar Ahmed DSc
2 days ago
$begingroup$
@DrZafarAhmedDSc Yes!
$endgroup$
– Atom
2 days ago
|
show 1 more comment
$begingroup$
$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$$
With some bit of tinkering with Desmos, I've got to know that the answer is ${pi over 2} a^{n-1}$.
But can you help prove that?
Sorry for the typo. I meant $sin nx$ instead of $cos nx$.
integration definite-integrals
$endgroup$
$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$$
With some bit of tinkering with Desmos, I've got to know that the answer is ${pi over 2} a^{n-1}$.
But can you help prove that?
Sorry for the typo. I meant $sin nx$ instead of $cos nx$.
integration definite-integrals
integration definite-integrals
edited 2 days ago
Asaf Karagila♦
315k35 gold badges454 silver badges788 bronze badges
315k35 gold badges454 silver badges788 bronze badges
asked 2 days ago
AtomAtom
4581 silver badge9 bronze badges
4581 silver badge9 bronze badges
4
$begingroup$
So for $n=1$, you expect an answer independent of $a$...?
$endgroup$
– StackTD
2 days ago
2
$begingroup$
I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
$endgroup$
– Kavi Rama Murthy
2 days ago
$begingroup$
desmos.com/calculator/zowwz6h8mo Check this out.
$endgroup$
– Atom
2 days ago
$begingroup$
@Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
$endgroup$
– Dr Zafar Ahmed DSc
2 days ago
$begingroup$
@DrZafarAhmedDSc Yes!
$endgroup$
– Atom
2 days ago
|
show 1 more comment
4
$begingroup$
So for $n=1$, you expect an answer independent of $a$...?
$endgroup$
– StackTD
2 days ago
2
$begingroup$
I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
$endgroup$
– Kavi Rama Murthy
2 days ago
$begingroup$
desmos.com/calculator/zowwz6h8mo Check this out.
$endgroup$
– Atom
2 days ago
$begingroup$
@Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
$endgroup$
– Dr Zafar Ahmed DSc
2 days ago
$begingroup$
@DrZafarAhmedDSc Yes!
$endgroup$
– Atom
2 days ago
4
4
$begingroup$
So for $n=1$, you expect an answer independent of $a$...?
$endgroup$
– StackTD
2 days ago
$begingroup$
So for $n=1$, you expect an answer independent of $a$...?
$endgroup$
– StackTD
2 days ago
2
2
$begingroup$
I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
$endgroup$
– Kavi Rama Murthy
2 days ago
$begingroup$
I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
$endgroup$
– Kavi Rama Murthy
2 days ago
$begingroup$
desmos.com/calculator/zowwz6h8mo Check this out.
$endgroup$
– Atom
2 days ago
$begingroup$
desmos.com/calculator/zowwz6h8mo Check this out.
$endgroup$
– Atom
2 days ago
$begingroup$
@Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
$endgroup$
– Dr Zafar Ahmed DSc
2 days ago
$begingroup$
@Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
$endgroup$
– Dr Zafar Ahmed DSc
2 days ago
$begingroup$
@DrZafarAhmedDSc Yes!
$endgroup$
– Atom
2 days ago
$begingroup$
@DrZafarAhmedDSc Yes!
$endgroup$
– Atom
2 days ago
|
show 1 more comment
3 Answers
3
active
oldest
votes
$begingroup$
We can do something more general using a result proven here, namely:
$$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$
$$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
$$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
Just swap $(n,k)$ and $(a,b)$ for other conditions.
$endgroup$
$begingroup$
Should the exponent near the end be $n-k$ instead of $k-n$ ?
$endgroup$
– Empy2
2 days ago
$begingroup$
Is it fine now?
$endgroup$
– Zacky
2 days ago
1
$begingroup$
I think it is right.
$endgroup$
– Empy2
2 days ago
add a comment |
$begingroup$
Partial Answer
This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.
$endgroup$
add a comment |
$begingroup$
$$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
$$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$
Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
$$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3324001%2fhow-to-compute-int-0-pi-sin-x-sin-nx-over-1-2a-cos-xa2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We can do something more general using a result proven here, namely:
$$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$
$$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
$$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
Just swap $(n,k)$ and $(a,b)$ for other conditions.
$endgroup$
$begingroup$
Should the exponent near the end be $n-k$ instead of $k-n$ ?
$endgroup$
– Empy2
2 days ago
$begingroup$
Is it fine now?
$endgroup$
– Zacky
2 days ago
1
$begingroup$
I think it is right.
$endgroup$
– Empy2
2 days ago
add a comment |
$begingroup$
We can do something more general using a result proven here, namely:
$$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$
$$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
$$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
Just swap $(n,k)$ and $(a,b)$ for other conditions.
$endgroup$
$begingroup$
Should the exponent near the end be $n-k$ instead of $k-n$ ?
$endgroup$
– Empy2
2 days ago
$begingroup$
Is it fine now?
$endgroup$
– Zacky
2 days ago
1
$begingroup$
I think it is right.
$endgroup$
– Empy2
2 days ago
add a comment |
$begingroup$
We can do something more general using a result proven here, namely:
$$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$
$$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
$$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
Just swap $(n,k)$ and $(a,b)$ for other conditions.
$endgroup$
We can do something more general using a result proven here, namely:
$$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$
$$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
$$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
Just swap $(n,k)$ and $(a,b)$ for other conditions.
edited 2 days ago
answered 2 days ago
ZackyZacky
13.2k1 gold badge21 silver badges85 bronze badges
13.2k1 gold badge21 silver badges85 bronze badges
$begingroup$
Should the exponent near the end be $n-k$ instead of $k-n$ ?
$endgroup$
– Empy2
2 days ago
$begingroup$
Is it fine now?
$endgroup$
– Zacky
2 days ago
1
$begingroup$
I think it is right.
$endgroup$
– Empy2
2 days ago
add a comment |
$begingroup$
Should the exponent near the end be $n-k$ instead of $k-n$ ?
$endgroup$
– Empy2
2 days ago
$begingroup$
Is it fine now?
$endgroup$
– Zacky
2 days ago
1
$begingroup$
I think it is right.
$endgroup$
– Empy2
2 days ago
$begingroup$
Should the exponent near the end be $n-k$ instead of $k-n$ ?
$endgroup$
– Empy2
2 days ago
$begingroup$
Should the exponent near the end be $n-k$ instead of $k-n$ ?
$endgroup$
– Empy2
2 days ago
$begingroup$
Is it fine now?
$endgroup$
– Zacky
2 days ago
$begingroup$
Is it fine now?
$endgroup$
– Zacky
2 days ago
1
1
$begingroup$
I think it is right.
$endgroup$
– Empy2
2 days ago
$begingroup$
I think it is right.
$endgroup$
– Empy2
2 days ago
add a comment |
$begingroup$
Partial Answer
This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.
$endgroup$
add a comment |
$begingroup$
Partial Answer
This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.
$endgroup$
add a comment |
$begingroup$
Partial Answer
This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.
$endgroup$
Partial Answer
This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.
answered 2 days ago
Mostafa AyazMostafa Ayaz
18.9k3 gold badges10 silver badges43 bronze badges
18.9k3 gold badges10 silver badges43 bronze badges
add a comment |
add a comment |
$begingroup$
$$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
$$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$
Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
$$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$
$endgroup$
add a comment |
$begingroup$
$$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
$$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$
Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
$$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$
$endgroup$
add a comment |
$begingroup$
$$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
$$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$
Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
$$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$
$endgroup$
$$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
$$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$
Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
$$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$
edited 2 days ago
answered 2 days ago
Dr Zafar Ahmed DScDr Zafar Ahmed DSc
4,9871 gold badge3 silver badges17 bronze badges
4,9871 gold badge3 silver badges17 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3324001%2fhow-to-compute-int-0-pi-sin-x-sin-nx-over-1-2a-cos-xa2-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
So for $n=1$, you expect an answer independent of $a$...?
$endgroup$
– StackTD
2 days ago
2
$begingroup$
I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
$endgroup$
– Kavi Rama Murthy
2 days ago
$begingroup$
desmos.com/calculator/zowwz6h8mo Check this out.
$endgroup$
– Atom
2 days ago
$begingroup$
@Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
$endgroup$
– Dr Zafar Ahmed DSc
2 days ago
$begingroup$
@DrZafarAhmedDSc Yes!
$endgroup$
– Atom
2 days ago