How to compute $int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$Compute $int_0^pifrac{cos nx}{a^2-2abcos x+b^2},...

Output with the same length always

A reccomended structured approach to self studying music theory for songwriting

Designing a prison for a telekinetic race

Does the Temple of the Gods spell nullify critical hits?

global variant of csname…endcsname

The Lucky House

What happened after the end of the Truman Show?

Do I need to start off my book by describing the character's "normal world"?

Why don't modern jet engines use forced exhaust mixing?

How to change minor radius of a torus in blender 2.8

When does The Truman Show take place?

Parse a simple key=value config file in C

Why does this image of cyclocarbon look like a nonagon?

The Roommates' Dilemma

How does the illumination of the sky from the sun compare to that of the moon?

Spongy green glass found on graves

Why should P.I be willing to write strong LOR even if that means losing a undergraduate from his/her lab?

What should I do with the stock I own if I anticipate there will be a recession?

What allows us to use imaginary numbers?

Why should I pay for an SSL certificate?

Output the list of musical notes

What is the opposite of "hunger level"?

Polar contour plot in Mathematica?

Has there ever been a truly bilingual country prior to the contemporary period?



How to compute $int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$


Compute $int_0^pifrac{cos nx}{a^2-2abcos x+b^2}, dx$Proof that $int_0^{2pi}sin nx,dx=int_0^{2pi}cos nx,dx=0$How to find $int_0^{pi}frac{sin ntheta}{costheta-cosalpha}dtheta$Integrating $displaystyleint_0^{pi/2} {sin^2x over 1 + sin xcos x}dx$Prove that $int_0^frac{pi}{2}cos^mx sin^mxdx=2^{-m}int_0^frac{pi}{2}cos^mxdx$Evaluate $int_0^{frac{pi}{2}}frac{sin xcos x}{sin^4x+cos^4x}dx$Tricky real integral: $int_0^{2 pi} e^{cos(2 t)} cos(sin(2 t)) =2pi$$I =int_0^{2pi} ((e^{|sin x|} cos x)/(1+e^{tan x})) ,dx$






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







3












$begingroup$


$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$$



With some bit of tinkering with Desmos, I've got to know that the answer is ${pi over 2} a^{n-1}$.



But can you help prove that?





Sorry for the typo. I meant $sin nx$ instead of $cos nx$.










share|cite|improve this question











$endgroup$










  • 4




    $begingroup$
    So for $n=1$, you expect an answer independent of $a$...?
    $endgroup$
    – StackTD
    2 days ago








  • 2




    $begingroup$
    I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
    $endgroup$
    – Kavi Rama Murthy
    2 days ago










  • $begingroup$
    desmos.com/calculator/zowwz6h8mo Check this out.
    $endgroup$
    – Atom
    2 days ago










  • $begingroup$
    @Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
    $endgroup$
    – Dr Zafar Ahmed DSc
    2 days ago










  • $begingroup$
    @DrZafarAhmedDSc Yes!
    $endgroup$
    – Atom
    2 days ago


















3












$begingroup$


$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$$



With some bit of tinkering with Desmos, I've got to know that the answer is ${pi over 2} a^{n-1}$.



But can you help prove that?





Sorry for the typo. I meant $sin nx$ instead of $cos nx$.










share|cite|improve this question











$endgroup$










  • 4




    $begingroup$
    So for $n=1$, you expect an answer independent of $a$...?
    $endgroup$
    – StackTD
    2 days ago








  • 2




    $begingroup$
    I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
    $endgroup$
    – Kavi Rama Murthy
    2 days ago










  • $begingroup$
    desmos.com/calculator/zowwz6h8mo Check this out.
    $endgroup$
    – Atom
    2 days ago










  • $begingroup$
    @Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
    $endgroup$
    – Dr Zafar Ahmed DSc
    2 days ago










  • $begingroup$
    @DrZafarAhmedDSc Yes!
    $endgroup$
    – Atom
    2 days ago














3












3








3


3



$begingroup$


$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$$



With some bit of tinkering with Desmos, I've got to know that the answer is ${pi over 2} a^{n-1}$.



But can you help prove that?





Sorry for the typo. I meant $sin nx$ instead of $cos nx$.










share|cite|improve this question











$endgroup$




$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx$$



With some bit of tinkering with Desmos, I've got to know that the answer is ${pi over 2} a^{n-1}$.



But can you help prove that?





Sorry for the typo. I meant $sin nx$ instead of $cos nx$.







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Asaf Karagila

315k35 gold badges454 silver badges788 bronze badges




315k35 gold badges454 silver badges788 bronze badges










asked 2 days ago









AtomAtom

4581 silver badge9 bronze badges




4581 silver badge9 bronze badges











  • 4




    $begingroup$
    So for $n=1$, you expect an answer independent of $a$...?
    $endgroup$
    – StackTD
    2 days ago








  • 2




    $begingroup$
    I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
    $endgroup$
    – Kavi Rama Murthy
    2 days ago










  • $begingroup$
    desmos.com/calculator/zowwz6h8mo Check this out.
    $endgroup$
    – Atom
    2 days ago










  • $begingroup$
    @Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
    $endgroup$
    – Dr Zafar Ahmed DSc
    2 days ago










  • $begingroup$
    @DrZafarAhmedDSc Yes!
    $endgroup$
    – Atom
    2 days ago














  • 4




    $begingroup$
    So for $n=1$, you expect an answer independent of $a$...?
    $endgroup$
    – StackTD
    2 days ago








  • 2




    $begingroup$
    I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
    $endgroup$
    – Kavi Rama Murthy
    2 days ago










  • $begingroup$
    desmos.com/calculator/zowwz6h8mo Check this out.
    $endgroup$
    – Atom
    2 days ago










  • $begingroup$
    @Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
    $endgroup$
    – Dr Zafar Ahmed DSc
    2 days ago










  • $begingroup$
    @DrZafarAhmedDSc Yes!
    $endgroup$
    – Atom
    2 days ago








4




4




$begingroup$
So for $n=1$, you expect an answer independent of $a$...?
$endgroup$
– StackTD
2 days ago






$begingroup$
So for $n=1$, you expect an answer independent of $a$...?
$endgroup$
– StackTD
2 days ago






2




2




$begingroup$
I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
$endgroup$
– Kavi Rama Murthy
2 days ago




$begingroup$
I think $a^{2}$ times LHS tends to $0$ for any $n$ but $a^{2}$ times RHS tends to $infty$ as $ a to infty$. The result is false.
$endgroup$
– Kavi Rama Murthy
2 days ago












$begingroup$
desmos.com/calculator/zowwz6h8mo Check this out.
$endgroup$
– Atom
2 days ago




$begingroup$
desmos.com/calculator/zowwz6h8mo Check this out.
$endgroup$
– Atom
2 days ago












$begingroup$
@Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
$endgroup$
– Dr Zafar Ahmed DSc
2 days ago




$begingroup$
@Atom Please mention that your result is valid when $a^2<1$. You may see my solution.
$endgroup$
– Dr Zafar Ahmed DSc
2 days ago












$begingroup$
@DrZafarAhmedDSc Yes!
$endgroup$
– Atom
2 days ago




$begingroup$
@DrZafarAhmedDSc Yes!
$endgroup$
– Atom
2 days ago










3 Answers
3






active

oldest

votes


















4












$begingroup$

We can do something more general using a result proven here, namely:
$$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$



$$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
$$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
Just swap $(n,k)$ and $(a,b)$ for other conditions.






share|cite|improve this answer











$endgroup$















  • $begingroup$
    Should the exponent near the end be $n-k$ instead of $k-n$ ?
    $endgroup$
    – Empy2
    2 days ago










  • $begingroup$
    Is it fine now?
    $endgroup$
    – Zacky
    2 days ago






  • 1




    $begingroup$
    I think it is right.
    $endgroup$
    – Empy2
    2 days ago



















2












$begingroup$

Partial Answer



This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.






share|cite|improve this answer









$endgroup$























    1












    $begingroup$

    $$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
    $$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
    Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
    If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$



    Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
    $$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$






    share|cite|improve this answer











    $endgroup$


















      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3324001%2fhow-to-compute-int-0-pi-sin-x-sin-nx-over-1-2a-cos-xa2-dx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      We can do something more general using a result proven here, namely:
      $$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$



      $$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
      $$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
      Just swap $(n,k)$ and $(a,b)$ for other conditions.






      share|cite|improve this answer











      $endgroup$















      • $begingroup$
        Should the exponent near the end be $n-k$ instead of $k-n$ ?
        $endgroup$
        – Empy2
        2 days ago










      • $begingroup$
        Is it fine now?
        $endgroup$
        – Zacky
        2 days ago






      • 1




        $begingroup$
        I think it is right.
        $endgroup$
        – Empy2
        2 days ago
















      4












      $begingroup$

      We can do something more general using a result proven here, namely:
      $$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$



      $$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
      $$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
      Just swap $(n,k)$ and $(a,b)$ for other conditions.






      share|cite|improve this answer











      $endgroup$















      • $begingroup$
        Should the exponent near the end be $n-k$ instead of $k-n$ ?
        $endgroup$
        – Empy2
        2 days ago










      • $begingroup$
        Is it fine now?
        $endgroup$
        – Zacky
        2 days ago






      • 1




        $begingroup$
        I think it is right.
        $endgroup$
        – Empy2
        2 days ago














      4












      4








      4





      $begingroup$

      We can do something more general using a result proven here, namely:
      $$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$



      $$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
      $$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
      Just swap $(n,k)$ and $(a,b)$ for other conditions.






      share|cite|improve this answer











      $endgroup$



      We can do something more general using a result proven here, namely:
      $$int_0^pifrac{cos(mx)}{a^2-2abcos x+b^2}dx=frac{pi}{a^2-b^2}left(frac{b}{a}right)^m$$



      $$int_0^pi frac{sin(kx)sin(n x)}{a^2-2abcos x+b^2}dx=frac12int_0^pi frac{cos((k-n)x)-cos((k+n)x)}{a^2-2abcos x+b^2}dx$$
      $$=frac{pi}{2(a^2-b^2)}left(left(frac{b}{a}right)^{n-k}-left(frac{b}{a}right)^{n+k}right),quad n>k; a>b>0.$$
      Just swap $(n,k)$ and $(a,b)$ for other conditions.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited 2 days ago

























      answered 2 days ago









      ZackyZacky

      13.2k1 gold badge21 silver badges85 bronze badges




      13.2k1 gold badge21 silver badges85 bronze badges















      • $begingroup$
        Should the exponent near the end be $n-k$ instead of $k-n$ ?
        $endgroup$
        – Empy2
        2 days ago










      • $begingroup$
        Is it fine now?
        $endgroup$
        – Zacky
        2 days ago






      • 1




        $begingroup$
        I think it is right.
        $endgroup$
        – Empy2
        2 days ago


















      • $begingroup$
        Should the exponent near the end be $n-k$ instead of $k-n$ ?
        $endgroup$
        – Empy2
        2 days ago










      • $begingroup$
        Is it fine now?
        $endgroup$
        – Zacky
        2 days ago






      • 1




        $begingroup$
        I think it is right.
        $endgroup$
        – Empy2
        2 days ago
















      $begingroup$
      Should the exponent near the end be $n-k$ instead of $k-n$ ?
      $endgroup$
      – Empy2
      2 days ago




      $begingroup$
      Should the exponent near the end be $n-k$ instead of $k-n$ ?
      $endgroup$
      – Empy2
      2 days ago












      $begingroup$
      Is it fine now?
      $endgroup$
      – Zacky
      2 days ago




      $begingroup$
      Is it fine now?
      $endgroup$
      – Zacky
      2 days ago




      1




      1




      $begingroup$
      I think it is right.
      $endgroup$
      – Empy2
      2 days ago




      $begingroup$
      I think it is right.
      $endgroup$
      – Empy2
      2 days ago













      2












      $begingroup$

      Partial Answer



      This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.






      share|cite|improve this answer









      $endgroup$




















        2












        $begingroup$

        Partial Answer



        This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.






        share|cite|improve this answer









        $endgroup$


















          2












          2








          2





          $begingroup$

          Partial Answer



          This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.






          share|cite|improve this answer









          $endgroup$



          Partial Answer



          This function is even so we can write$$int_0^pi {sin xsin nxover 1-2acos x+a^2} dx={1over 2}int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx$$by defining $z=e^{ix}$ we have$$int_{-pi}^pi {sin xsin nxover 1-2acos x+a^2} dx{=oint_{|z|=1} {{1over 2i}(z-z^{-1}){1over 2i}(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z-z^{-1})(z^{n}-z^{-n})over 1-aleft(z+{1over z}right)+a^2} {dzover iz}\=-{1over 4}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^n((1+a^2)z-aleft(z^2+1right))} {dzover iz}\={1over 4ai}oint_{|z|=1} {(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)} {dz}}$$with the singularities of ${(z^2-1)(z^{2n}-1)over z^{n+1}(z-a)left(z-{1over a}right)}$ falling in $z={1over a},0,a$ when $ane 1$. For $r=1$, the only singularity exists in $z=0$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 days ago









          Mostafa AyazMostafa Ayaz

          18.9k3 gold badges10 silver badges43 bronze badges




          18.9k3 gold badges10 silver badges43 bronze badges


























              1












              $begingroup$

              $$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
              $$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
              Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
              If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$



              Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
              $$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$






              share|cite|improve this answer











              $endgroup$




















                1












                $begingroup$

                $$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
                $$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
                Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
                If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$



                Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
                $$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$






                share|cite|improve this answer











                $endgroup$


















                  1












                  1








                  1





                  $begingroup$

                  $$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
                  $$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
                  Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
                  If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$



                  Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
                  $$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$






                  share|cite|improve this answer











                  $endgroup$



                  $$I=int_{0}^{pi} frac {sin x sin n x}{1-2a cos x+a^2} dx ~~~~(1)$$ Integrate it by parts taking $sin x$ as the first function, we get
                  $$I=-frac{n}{2a}int_{0}^{pi} cos n x ln[1-2a cos x +a^2] dx ~~~~(2).$$
                  Let $y=cos x+i sin x$, then $$f(x)=ln(1-2acos x+a^2)=ln(1-ay)+ln(1-a/y).$$
                  If $a^2<1,$ then $$f(x)=-2[a cos x + frac{a^2cos 2 x}{2}+frac{a^3 cos 3 x}{3}+...]~~~~(3)$$



                  Using (3) in (2) and using the property that $$int_{0}^{pi} cos m x cos n x dx=frac{pi}{2}delta_{m,n}$$ we get
                  $$I=frac{n}{a} frac{a^n}{n} frac{pi}{2}=frac{pi a^{n-1}}{2},~~~ a^2 <1.$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 2 days ago

























                  answered 2 days ago









                  Dr Zafar Ahmed DScDr Zafar Ahmed DSc

                  4,9871 gold badge3 silver badges17 bronze badges




                  4,9871 gold badge3 silver badges17 bronze badges

































                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3324001%2fhow-to-compute-int-0-pi-sin-x-sin-nx-over-1-2a-cos-xa2-dx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

                      Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

                      Ciclooctatetraenă Vezi și | Bibliografie | Meniu de navigare637866text4148569-500570979m