use of the disk commandHow to use Undocumented Functions Prism, Tetrahedron and HexahedronHow to create a...

If an object moving in a circle experiences centripetal force, then doesn't it also experience centrifugal force, because of Newton's third law?

What was an "insurance cover"?

Why there so many pitch control surfaces on the Piaggio P180 Avanti?

What are these pixel-level discolored specks? How can I fix it?

Hilbert's hotel, why can't I repeat it infinitely many times?

CDG baggage claim before or after immigration?

What do solvers like Gurobi and CPLEX do when they run into hard instances of MIP

Is there an in-universe reason Harry says this or is this simply a Rowling mistake?

What is a Heptagon Number™?

Is there any actual security benefit to restricting foreign IPs?

Which museums have artworks of all four ninja turtles' namesakes?

Is it true that, "just ten trading days represent 63 per cent of the returns of the past 50 years"?

What is the most damaging one handed melee weapon?

How to ask a man to not take up more than one seat on public transport while avoiding conflict?

Asking an expert in your field that you have never met to review your manuscript

Cheap antenna for new HF HAM

Safely hang a mirror that does not have hooks

What did the controller say during my approach to land (audio clip)?

Did Apollo carry and use WD40?

How use custom order in folder on Windows 7 and 10

How to deal with my team leader who keeps calling me about project updates even though I am on leave for personal reasons?

Social leper versus social leopard

Should the pagination be reset when changing the order?

Is there any reason nowadays to use a neon indicator lamp instead of an LED?



use of the disk command


How to use Undocumented Functions Prism, Tetrahedron and HexahedronHow to create a Poincaré disk type kaleidoscope in Mathematica?Unable to compute the area of regionHow to display MeshRegion without verticesPolytopes package for represents the intersection of elementsThe fastest thing since sliced cubes?How to find area of intersection of disk and cone?Checking whether the line is parallel to the plane






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}







3












$begingroup$


They would be kind enough to give me some indications of using the disk command in any of these cases (calculation of area and perimeter of the scratched)



I have looked for something that tells me how to do it, but I can't find anything acceptable, or maybe I look bad.
<<<< any help is welcome



enter image description here










share|improve this question











$endgroup$





















    3












    $begingroup$


    They would be kind enough to give me some indications of using the disk command in any of these cases (calculation of area and perimeter of the scratched)



    I have looked for something that tells me how to do it, but I can't find anything acceptable, or maybe I look bad.
    <<<< any help is welcome



    enter image description here










    share|improve this question











    $endgroup$

















      3












      3








      3





      $begingroup$


      They would be kind enough to give me some indications of using the disk command in any of these cases (calculation of area and perimeter of the scratched)



      I have looked for something that tells me how to do it, but I can't find anything acceptable, or maybe I look bad.
      <<<< any help is welcome



      enter image description here










      share|improve this question











      $endgroup$




      They would be kind enough to give me some indications of using the disk command in any of these cases (calculation of area and perimeter of the scratched)



      I have looked for something that tells me how to do it, but I can't find anything acceptable, or maybe I look bad.
      <<<< any help is welcome



      enter image description here







      regions geometry






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 3 hours ago









      J. M. will be back soon

      100k10 gold badges317 silver badges476 bronze badges




      100k10 gold badges317 silver badges476 bronze badges










      asked 11 hours ago









      zeroszeros

      8291 gold badge7 silver badges13 bronze badges




      8291 gold badge7 silver badges13 bronze badges

























          3 Answers
          3






          active

          oldest

          votes


















          3














          $begingroup$

          Here is an alternative of
          the previous answer
          that might give you the plots in your question (after a sufficient number of experiments.)



          Clear[RandomDisk]
          RandomDisk[] := {Opacity[RandomChoice[Range[0, 1, 0.25]]],
          FaceForm[RandomChoice[{None, Pink, Gray, LightBlue}]],
          EdgeForm[Black],
          Disk[RandomChoice[
          Append[Flatten[Outer[List, {0, 1}, {0, 1}], 1], {0.5, 0.5}]],
          RandomChoice[{0.5, 1}]]};

          Clear[RandomRectangle]
          RandomRectangle[] := {EdgeForm[
          RandomChoice[{None, Black, Blue, Red, Gray, Orange, LightBlue}]],
          FaceForm[None], Rectangle[]}

          Multicolumn[
          Table[Graphics[{Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
          1], RandomRectangle[]}, Frame -> True, PlotRangeClipping -> True,
          PlotRange -> {{0, 1}, {0, 1}}], 16], 4]


          enter image description here



          enter image description here






          share|improve this answer











          $endgroup$























            3














            $begingroup$

            You can specify the quarter disks using the three-argument form of Disk.



            For the first picture:



            a = 1;
            d1 = Disk[{0, 0}, a, {0, Pi/2}];
            d2 = Disk[{a, 0}, a, {Pi/2, Pi}];
            d3 = Disk[{0, a}, a, {-Pi/2, 0}];

            Graphics[{EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3}]


            enter image description here



            ri = RegionIntersection[d1, d2, d3];

            Perimeter[ri]



            2.61799




            N @ Area[ri]



            0.442972




            A simpler alternative is to take the intersections of full disks with Rectangle[{0,0},{a,a}]:



            d1b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,0}, a]];
            d2b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{a,0}, a]];
            d3b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,a}, a]];

            Graphics[{EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b}]



            same picture




            Similarly, for the third picture:



            Graphics[{Opacity[.25], Blue, d2b, Red, Disk[{a, a}/2, a/2]}]


            enter image description here



            rd = RegionDifference[ Disk[{a, a}/2, a/2], d2b];
            Through[{Perimeter, N@*Area}@rd]



            {2.18282, 0.146381}







            share|improve this answer











            $endgroup$























              2














              $begingroup$

              Clear["Global`*"]


              For the first image



              reg[1, a_] = Disk[{0, 0}, a, {0, Pi/2}];
              reg[2, a_] = Disk[{a, 0}, a, {Pi/2, Pi}];
              reg[3, a_] = Disk[{0, a}, a, {-Pi/2, 0}];
              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

              Show[
              Graphics[{
              EdgeForm[Black],
              Lighter[Blue, 0.6],
              Opacity[0.75],
              reg[1, 1], reg[2, 1], reg[3, 1]}],
              Region[reg[4, 1],
              BaseStyle -> Opacity[0.5, Blue]]]


              enter image description here



              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



              Graphics[{
              EdgeForm[Black],
              Lighter[Blue, 0.6],
              Opacity[0.75],
              reg[1, 1], reg[2, 1], reg[3, 1],
              DiscretizeRegion[reg[4, 1],
              MeshCellStyle -> Opacity[0.5, Blue],
              MaxCellMeasure -> 1]}]


              enter image description here



              The area is proportional to a^2



              And @@ Table[
              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
              {a, 1, 10}]

              (* True *)

              area1 = a^2*Area[reg[4, 1]]

              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

              area1 // N

              (* 0.442972 a^2 *)

              Perimeter[reg[4, 1]]

              (* 2.61799 *)


              For the second image



              reg[5, a_] = Disk[{a, a}, a, {Pi, 3 Pi/2}]; reg[6, a_] = 
              RegionUnion[
              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
              {{reg[1, a], reg[2, a],
              reg[3, a], reg[5, a]},
              {reg[2, a], reg[5, a], reg[1, a], reg[3, a]},
              {reg[1, a], reg[3, a], reg[2, a], reg[5, a]},
              {reg[3, a], reg[5, a], reg[1, a], reg[2, a]}}];

              Show[
              Graphics[{
              EdgeForm[Black],
              White, Opacity[0.25],
              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]}],
              Region[reg[6, 1], BaseStyle -> LightGray],
              Frame -> True]


              enter image description here



              The area is proportional to a^2



              And @@ Table[
              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
              {a, 1, 10}]

              (* True *)

              area2 = a^2*Area[reg[6, 1]] // Simplify

              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

              area2 // N

              (* 0.173554 a^2 *)

              Perimeter[reg[6, 1]]

              (* 7.11792 *)


              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
              {reg[1, a], reg[2, a], reg[3, a], reg[5, a]}];

              4*Perimeter[reg[6 sr, 1]]

              (* 8.18879 *)


              For the last image



              reg[7, a_] = Disk[{a/2, a/2}, a/2];

              reg[8, a_] = BooleanRegion[#1 && ! #2 &, {reg[7, a], reg[2, a]}];

              Show[
              Graphics[{
              EdgeForm[Black],
              White, Opacity[0.25],
              Rectangle[{0, 0}],
              reg[2, 1], reg[7, 1]}],
              Region[reg[8, 1], BaseStyle -> Red]]


              enter image description here



              The area is proportional to a^2



              And @@ Table[
              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
              {a, 1, 10}]

              (* True *)

              area3 = a^2*Area[reg[8, 1]] //
              TrigToExp // FullSimplify

              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

              area3 // N

              (* 0.146381 a^2 *)

              Perimeter[reg[8, 1]]

              (* 2.18282 *)





              share|improve this answer











              $endgroup$















              • $begingroup$
                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                $endgroup$
                – zeros
                6 hours ago










              • $begingroup$
                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                $endgroup$
                – Bob Hanlon
                2 hours ago














              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "387"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });















              draft saved

              draft discarded
















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f206447%2fuse-of-the-disk-command%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3














              $begingroup$

              Here is an alternative of
              the previous answer
              that might give you the plots in your question (after a sufficient number of experiments.)



              Clear[RandomDisk]
              RandomDisk[] := {Opacity[RandomChoice[Range[0, 1, 0.25]]],
              FaceForm[RandomChoice[{None, Pink, Gray, LightBlue}]],
              EdgeForm[Black],
              Disk[RandomChoice[
              Append[Flatten[Outer[List, {0, 1}, {0, 1}], 1], {0.5, 0.5}]],
              RandomChoice[{0.5, 1}]]};

              Clear[RandomRectangle]
              RandomRectangle[] := {EdgeForm[
              RandomChoice[{None, Black, Blue, Red, Gray, Orange, LightBlue}]],
              FaceForm[None], Rectangle[]}

              Multicolumn[
              Table[Graphics[{Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
              1], RandomRectangle[]}, Frame -> True, PlotRangeClipping -> True,
              PlotRange -> {{0, 1}, {0, 1}}], 16], 4]


              enter image description here



              enter image description here






              share|improve this answer











              $endgroup$




















                3














                $begingroup$

                Here is an alternative of
                the previous answer
                that might give you the plots in your question (after a sufficient number of experiments.)



                Clear[RandomDisk]
                RandomDisk[] := {Opacity[RandomChoice[Range[0, 1, 0.25]]],
                FaceForm[RandomChoice[{None, Pink, Gray, LightBlue}]],
                EdgeForm[Black],
                Disk[RandomChoice[
                Append[Flatten[Outer[List, {0, 1}, {0, 1}], 1], {0.5, 0.5}]],
                RandomChoice[{0.5, 1}]]};

                Clear[RandomRectangle]
                RandomRectangle[] := {EdgeForm[
                RandomChoice[{None, Black, Blue, Red, Gray, Orange, LightBlue}]],
                FaceForm[None], Rectangle[]}

                Multicolumn[
                Table[Graphics[{Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
                1], RandomRectangle[]}, Frame -> True, PlotRangeClipping -> True,
                PlotRange -> {{0, 1}, {0, 1}}], 16], 4]


                enter image description here



                enter image description here






                share|improve this answer











                $endgroup$


















                  3














                  3










                  3







                  $begingroup$

                  Here is an alternative of
                  the previous answer
                  that might give you the plots in your question (after a sufficient number of experiments.)



                  Clear[RandomDisk]
                  RandomDisk[] := {Opacity[RandomChoice[Range[0, 1, 0.25]]],
                  FaceForm[RandomChoice[{None, Pink, Gray, LightBlue}]],
                  EdgeForm[Black],
                  Disk[RandomChoice[
                  Append[Flatten[Outer[List, {0, 1}, {0, 1}], 1], {0.5, 0.5}]],
                  RandomChoice[{0.5, 1}]]};

                  Clear[RandomRectangle]
                  RandomRectangle[] := {EdgeForm[
                  RandomChoice[{None, Black, Blue, Red, Gray, Orange, LightBlue}]],
                  FaceForm[None], Rectangle[]}

                  Multicolumn[
                  Table[Graphics[{Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
                  1], RandomRectangle[]}, Frame -> True, PlotRangeClipping -> True,
                  PlotRange -> {{0, 1}, {0, 1}}], 16], 4]


                  enter image description here



                  enter image description here






                  share|improve this answer











                  $endgroup$



                  Here is an alternative of
                  the previous answer
                  that might give you the plots in your question (after a sufficient number of experiments.)



                  Clear[RandomDisk]
                  RandomDisk[] := {Opacity[RandomChoice[Range[0, 1, 0.25]]],
                  FaceForm[RandomChoice[{None, Pink, Gray, LightBlue}]],
                  EdgeForm[Black],
                  Disk[RandomChoice[
                  Append[Flatten[Outer[List, {0, 1}, {0, 1}], 1], {0.5, 0.5}]],
                  RandomChoice[{0.5, 1}]]};

                  Clear[RandomRectangle]
                  RandomRectangle[] := {EdgeForm[
                  RandomChoice[{None, Black, Blue, Red, Gray, Orange, LightBlue}]],
                  FaceForm[None], Rectangle[]}

                  Multicolumn[
                  Table[Graphics[{Flatten[Table[RandomDisk[], RandomChoice[Range[4]]],
                  1], RandomRectangle[]}, Frame -> True, PlotRangeClipping -> True,
                  PlotRange -> {{0, 1}, {0, 1}}], 16], 4]


                  enter image description here



                  enter image description here







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 9 hours ago

























                  answered 10 hours ago









                  Anton AntonovAnton Antonov

                  25.8k1 gold badge68 silver badges122 bronze badges




                  25.8k1 gold badge68 silver badges122 bronze badges




























                      3














                      $begingroup$

                      You can specify the quarter disks using the three-argument form of Disk.



                      For the first picture:



                      a = 1;
                      d1 = Disk[{0, 0}, a, {0, Pi/2}];
                      d2 = Disk[{a, 0}, a, {Pi/2, Pi}];
                      d3 = Disk[{0, a}, a, {-Pi/2, 0}];

                      Graphics[{EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3}]


                      enter image description here



                      ri = RegionIntersection[d1, d2, d3];

                      Perimeter[ri]



                      2.61799




                      N @ Area[ri]



                      0.442972




                      A simpler alternative is to take the intersections of full disks with Rectangle[{0,0},{a,a}]:



                      d1b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,0}, a]];
                      d2b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{a,0}, a]];
                      d3b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,a}, a]];

                      Graphics[{EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b}]



                      same picture




                      Similarly, for the third picture:



                      Graphics[{Opacity[.25], Blue, d2b, Red, Disk[{a, a}/2, a/2]}]


                      enter image description here



                      rd = RegionDifference[ Disk[{a, a}/2, a/2], d2b];
                      Through[{Perimeter, N@*Area}@rd]



                      {2.18282, 0.146381}







                      share|improve this answer











                      $endgroup$




















                        3














                        $begingroup$

                        You can specify the quarter disks using the three-argument form of Disk.



                        For the first picture:



                        a = 1;
                        d1 = Disk[{0, 0}, a, {0, Pi/2}];
                        d2 = Disk[{a, 0}, a, {Pi/2, Pi}];
                        d3 = Disk[{0, a}, a, {-Pi/2, 0}];

                        Graphics[{EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3}]


                        enter image description here



                        ri = RegionIntersection[d1, d2, d3];

                        Perimeter[ri]



                        2.61799




                        N @ Area[ri]



                        0.442972




                        A simpler alternative is to take the intersections of full disks with Rectangle[{0,0},{a,a}]:



                        d1b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,0}, a]];
                        d2b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{a,0}, a]];
                        d3b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,a}, a]];

                        Graphics[{EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b}]



                        same picture




                        Similarly, for the third picture:



                        Graphics[{Opacity[.25], Blue, d2b, Red, Disk[{a, a}/2, a/2]}]


                        enter image description here



                        rd = RegionDifference[ Disk[{a, a}/2, a/2], d2b];
                        Through[{Perimeter, N@*Area}@rd]



                        {2.18282, 0.146381}







                        share|improve this answer











                        $endgroup$


















                          3














                          3










                          3







                          $begingroup$

                          You can specify the quarter disks using the three-argument form of Disk.



                          For the first picture:



                          a = 1;
                          d1 = Disk[{0, 0}, a, {0, Pi/2}];
                          d2 = Disk[{a, 0}, a, {Pi/2, Pi}];
                          d3 = Disk[{0, a}, a, {-Pi/2, 0}];

                          Graphics[{EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3}]


                          enter image description here



                          ri = RegionIntersection[d1, d2, d3];

                          Perimeter[ri]



                          2.61799




                          N @ Area[ri]



                          0.442972




                          A simpler alternative is to take the intersections of full disks with Rectangle[{0,0},{a,a}]:



                          d1b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,0}, a]];
                          d2b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{a,0}, a]];
                          d3b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,a}, a]];

                          Graphics[{EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b}]



                          same picture




                          Similarly, for the third picture:



                          Graphics[{Opacity[.25], Blue, d2b, Red, Disk[{a, a}/2, a/2]}]


                          enter image description here



                          rd = RegionDifference[ Disk[{a, a}/2, a/2], d2b];
                          Through[{Perimeter, N@*Area}@rd]



                          {2.18282, 0.146381}







                          share|improve this answer











                          $endgroup$



                          You can specify the quarter disks using the three-argument form of Disk.



                          For the first picture:



                          a = 1;
                          d1 = Disk[{0, 0}, a, {0, Pi/2}];
                          d2 = Disk[{a, 0}, a, {Pi/2, Pi}];
                          d3 = Disk[{0, a}, a, {-Pi/2, 0}];

                          Graphics[{EdgeForm[Gray], Opacity[.25], Red, d1, Blue, d2 , Green, d3}]


                          enter image description here



                          ri = RegionIntersection[d1, d2, d3];

                          Perimeter[ri]



                          2.61799




                          N @ Area[ri]



                          0.442972




                          A simpler alternative is to take the intersections of full disks with Rectangle[{0,0},{a,a}]:



                          d1b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,0}, a]];
                          d2b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{a,0}, a]];
                          d3b=RegionIntersection[Rectangle[{0,0}, {a,a}], Disk[{0,a}, a]];

                          Graphics[{EdgeForm[Gray],Opacity[.25], Red, d1b, Blue, d2b, Green, d3b}]



                          same picture




                          Similarly, for the third picture:



                          Graphics[{Opacity[.25], Blue, d2b, Red, Disk[{a, a}/2, a/2]}]


                          enter image description here



                          rd = RegionDifference[ Disk[{a, a}/2, a/2], d2b];
                          Through[{Perimeter, N@*Area}@rd]



                          {2.18282, 0.146381}








                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 9 hours ago

























                          answered 10 hours ago









                          kglrkglr

                          217k10 gold badges247 silver badges497 bronze badges




                          217k10 gold badges247 silver badges497 bronze badges


























                              2














                              $begingroup$

                              Clear["Global`*"]


                              For the first image



                              reg[1, a_] = Disk[{0, 0}, a, {0, Pi/2}];
                              reg[2, a_] = Disk[{a, 0}, a, {Pi/2, Pi}];
                              reg[3, a_] = Disk[{0, a}, a, {-Pi/2, 0}];
                              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1]}],
                              Region[reg[4, 1],
                              BaseStyle -> Opacity[0.5, Blue]]]


                              enter image description here



                              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



                              Graphics[{
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1],
                              DiscretizeRegion[reg[4, 1],
                              MeshCellStyle -> Opacity[0.5, Blue],
                              MaxCellMeasure -> 1]}]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
                              {a, 1, 10}]

                              (* True *)

                              area1 = a^2*Area[reg[4, 1]]

                              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

                              area1 // N

                              (* 0.442972 a^2 *)

                              Perimeter[reg[4, 1]]

                              (* 2.61799 *)


                              For the second image



                              reg[5, a_] = Disk[{a, a}, a, {Pi, 3 Pi/2}]; reg[6, a_] = 
                              RegionUnion[
                              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
                              {{reg[1, a], reg[2, a],
                              reg[3, a], reg[5, a]},
                              {reg[2, a], reg[5, a], reg[1, a], reg[3, a]},
                              {reg[1, a], reg[3, a], reg[2, a], reg[5, a]},
                              {reg[3, a], reg[5, a], reg[1, a], reg[2, a]}}];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]}],
                              Region[reg[6, 1], BaseStyle -> LightGray],
                              Frame -> True]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
                              {a, 1, 10}]

                              (* True *)

                              area2 = a^2*Area[reg[6, 1]] // Simplify

                              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

                              area2 // N

                              (* 0.173554 a^2 *)

                              Perimeter[reg[6, 1]]

                              (* 7.11792 *)


                              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



                              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
                              {reg[1, a], reg[2, a], reg[3, a], reg[5, a]}];

                              4*Perimeter[reg[6 sr, 1]]

                              (* 8.18879 *)


                              For the last image



                              reg[7, a_] = Disk[{a/2, a/2}, a/2];

                              reg[8, a_] = BooleanRegion[#1 && ! #2 &, {reg[7, a], reg[2, a]}];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              Rectangle[{0, 0}],
                              reg[2, 1], reg[7, 1]}],
                              Region[reg[8, 1], BaseStyle -> Red]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
                              {a, 1, 10}]

                              (* True *)

                              area3 = a^2*Area[reg[8, 1]] //
                              TrigToExp // FullSimplify

                              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

                              area3 // N

                              (* 0.146381 a^2 *)

                              Perimeter[reg[8, 1]]

                              (* 2.18282 *)





                              share|improve this answer











                              $endgroup$















                              • $begingroup$
                                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                                $endgroup$
                                – zeros
                                6 hours ago










                              • $begingroup$
                                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                                $endgroup$
                                – Bob Hanlon
                                2 hours ago
















                              2














                              $begingroup$

                              Clear["Global`*"]


                              For the first image



                              reg[1, a_] = Disk[{0, 0}, a, {0, Pi/2}];
                              reg[2, a_] = Disk[{a, 0}, a, {Pi/2, Pi}];
                              reg[3, a_] = Disk[{0, a}, a, {-Pi/2, 0}];
                              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1]}],
                              Region[reg[4, 1],
                              BaseStyle -> Opacity[0.5, Blue]]]


                              enter image description here



                              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



                              Graphics[{
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1],
                              DiscretizeRegion[reg[4, 1],
                              MeshCellStyle -> Opacity[0.5, Blue],
                              MaxCellMeasure -> 1]}]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
                              {a, 1, 10}]

                              (* True *)

                              area1 = a^2*Area[reg[4, 1]]

                              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

                              area1 // N

                              (* 0.442972 a^2 *)

                              Perimeter[reg[4, 1]]

                              (* 2.61799 *)


                              For the second image



                              reg[5, a_] = Disk[{a, a}, a, {Pi, 3 Pi/2}]; reg[6, a_] = 
                              RegionUnion[
                              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
                              {{reg[1, a], reg[2, a],
                              reg[3, a], reg[5, a]},
                              {reg[2, a], reg[5, a], reg[1, a], reg[3, a]},
                              {reg[1, a], reg[3, a], reg[2, a], reg[5, a]},
                              {reg[3, a], reg[5, a], reg[1, a], reg[2, a]}}];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]}],
                              Region[reg[6, 1], BaseStyle -> LightGray],
                              Frame -> True]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
                              {a, 1, 10}]

                              (* True *)

                              area2 = a^2*Area[reg[6, 1]] // Simplify

                              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

                              area2 // N

                              (* 0.173554 a^2 *)

                              Perimeter[reg[6, 1]]

                              (* 7.11792 *)


                              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



                              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
                              {reg[1, a], reg[2, a], reg[3, a], reg[5, a]}];

                              4*Perimeter[reg[6 sr, 1]]

                              (* 8.18879 *)


                              For the last image



                              reg[7, a_] = Disk[{a/2, a/2}, a/2];

                              reg[8, a_] = BooleanRegion[#1 && ! #2 &, {reg[7, a], reg[2, a]}];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              Rectangle[{0, 0}],
                              reg[2, 1], reg[7, 1]}],
                              Region[reg[8, 1], BaseStyle -> Red]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
                              {a, 1, 10}]

                              (* True *)

                              area3 = a^2*Area[reg[8, 1]] //
                              TrigToExp // FullSimplify

                              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

                              area3 // N

                              (* 0.146381 a^2 *)

                              Perimeter[reg[8, 1]]

                              (* 2.18282 *)





                              share|improve this answer











                              $endgroup$















                              • $begingroup$
                                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                                $endgroup$
                                – zeros
                                6 hours ago










                              • $begingroup$
                                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                                $endgroup$
                                – Bob Hanlon
                                2 hours ago














                              2














                              2










                              2







                              $begingroup$

                              Clear["Global`*"]


                              For the first image



                              reg[1, a_] = Disk[{0, 0}, a, {0, Pi/2}];
                              reg[2, a_] = Disk[{a, 0}, a, {Pi/2, Pi}];
                              reg[3, a_] = Disk[{0, a}, a, {-Pi/2, 0}];
                              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1]}],
                              Region[reg[4, 1],
                              BaseStyle -> Opacity[0.5, Blue]]]


                              enter image description here



                              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



                              Graphics[{
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1],
                              DiscretizeRegion[reg[4, 1],
                              MeshCellStyle -> Opacity[0.5, Blue],
                              MaxCellMeasure -> 1]}]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
                              {a, 1, 10}]

                              (* True *)

                              area1 = a^2*Area[reg[4, 1]]

                              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

                              area1 // N

                              (* 0.442972 a^2 *)

                              Perimeter[reg[4, 1]]

                              (* 2.61799 *)


                              For the second image



                              reg[5, a_] = Disk[{a, a}, a, {Pi, 3 Pi/2}]; reg[6, a_] = 
                              RegionUnion[
                              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
                              {{reg[1, a], reg[2, a],
                              reg[3, a], reg[5, a]},
                              {reg[2, a], reg[5, a], reg[1, a], reg[3, a]},
                              {reg[1, a], reg[3, a], reg[2, a], reg[5, a]},
                              {reg[3, a], reg[5, a], reg[1, a], reg[2, a]}}];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]}],
                              Region[reg[6, 1], BaseStyle -> LightGray],
                              Frame -> True]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
                              {a, 1, 10}]

                              (* True *)

                              area2 = a^2*Area[reg[6, 1]] // Simplify

                              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

                              area2 // N

                              (* 0.173554 a^2 *)

                              Perimeter[reg[6, 1]]

                              (* 7.11792 *)


                              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



                              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
                              {reg[1, a], reg[2, a], reg[3, a], reg[5, a]}];

                              4*Perimeter[reg[6 sr, 1]]

                              (* 8.18879 *)


                              For the last image



                              reg[7, a_] = Disk[{a/2, a/2}, a/2];

                              reg[8, a_] = BooleanRegion[#1 && ! #2 &, {reg[7, a], reg[2, a]}];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              Rectangle[{0, 0}],
                              reg[2, 1], reg[7, 1]}],
                              Region[reg[8, 1], BaseStyle -> Red]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
                              {a, 1, 10}]

                              (* True *)

                              area3 = a^2*Area[reg[8, 1]] //
                              TrigToExp // FullSimplify

                              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

                              area3 // N

                              (* 0.146381 a^2 *)

                              Perimeter[reg[8, 1]]

                              (* 2.18282 *)





                              share|improve this answer











                              $endgroup$



                              Clear["Global`*"]


                              For the first image



                              reg[1, a_] = Disk[{0, 0}, a, {0, Pi/2}];
                              reg[2, a_] = Disk[{a, 0}, a, {Pi/2, Pi}];
                              reg[3, a_] = Disk[{0, a}, a, {-Pi/2, 0}];
                              reg[4, a_] = RegionIntersection[reg[1, a], reg[2, a], reg[3, a]];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1]}],
                              Region[reg[4, 1],
                              BaseStyle -> Opacity[0.5, Blue]]]


                              enter image description here



                              EDIT: The gap at the lower-left corner can be filled by using DiscretizeRegion



                              Graphics[{
                              EdgeForm[Black],
                              Lighter[Blue, 0.6],
                              Opacity[0.75],
                              reg[1, 1], reg[2, 1], reg[3, 1],
                              DiscretizeRegion[reg[4, 1],
                              MeshCellStyle -> Opacity[0.5, Blue],
                              MaxCellMeasure -> 1]}]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[4, a]] == a^2*Area[reg[4, 1]],
                              {a, 1, 10}]

                              (* True *)

                              area1 = a^2*Area[reg[4, 1]]

                              (* 1/12 a^2 (-6 Sqrt[3] + 5 π) *)

                              area1 // N

                              (* 0.442972 a^2 *)

                              Perimeter[reg[4, 1]]

                              (* 2.61799 *)


                              For the second image



                              reg[5, a_] = Disk[{a, a}, a, {Pi, 3 Pi/2}]; reg[6, a_] = 
                              RegionUnion[
                              BooleanRegion[#1 && #2 && ! #3 && ! #4 &, #] & /@
                              {{reg[1, a], reg[2, a],
                              reg[3, a], reg[5, a]},
                              {reg[2, a], reg[5, a], reg[1, a], reg[3, a]},
                              {reg[1, a], reg[3, a], reg[2, a], reg[5, a]},
                              {reg[3, a], reg[5, a], reg[1, a], reg[2, a]}}];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              reg[1, 1], reg[2, 1], reg[3, 1], reg[5, 1]}],
                              Region[reg[6, 1], BaseStyle -> LightGray],
                              Frame -> True]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[6, a]] == a^2*Area[reg[6, 1]],
                              {a, 1, 10}]

                              (* True *)

                              area2 = a^2*Area[reg[6, 1]] // Simplify

                              (* -(1/3) a^2 (3 (-4 + Sqrt[3]) + 2 π) *)

                              area2 // N

                              (* 0.173554 a^2 *)

                              Perimeter[reg[6, 1]]

                              (* 7.11792 *)


                              This number for the perimeter is too low since each of the four subregions has a perimeter that must exceed 2. Looking at 4 times the perimeter of a subregion



                              reg[6 sr, a_] = BooleanRegion[#1 && #2 && ! #3 && ! #4 &,
                              {reg[1, a], reg[2, a], reg[3, a], reg[5, a]}];

                              4*Perimeter[reg[6 sr, 1]]

                              (* 8.18879 *)


                              For the last image



                              reg[7, a_] = Disk[{a/2, a/2}, a/2];

                              reg[8, a_] = BooleanRegion[#1 && ! #2 &, {reg[7, a], reg[2, a]}];

                              Show[
                              Graphics[{
                              EdgeForm[Black],
                              White, Opacity[0.25],
                              Rectangle[{0, 0}],
                              reg[2, 1], reg[7, 1]}],
                              Region[reg[8, 1], BaseStyle -> Red]]


                              enter image description here



                              The area is proportional to a^2



                              And @@ Table[
                              Area[reg[8, a]] == a^2*Area[reg[8, 1]] // Simplify,
                              {a, 1, 10}]

                              (* True *)

                              area3 = a^2*Area[reg[8, 1]] //
                              TrigToExp // FullSimplify

                              (* 1/8 a^2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)

                              area3 // N

                              (* 0.146381 a^2 *)

                              Perimeter[reg[8, 1]]

                              (* 2.18282 *)






                              share|improve this answer














                              share|improve this answer



                              share|improve this answer








                              edited 2 hours ago

























                              answered 8 hours ago









                              Bob HanlonBob Hanlon

                              65.6k3 gold badges37 silver badges100 bronze badges




                              65.6k3 gold badges37 silver badges100 bronze badges















                              • $begingroup$
                                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                                $endgroup$
                                – zeros
                                6 hours ago










                              • $begingroup$
                                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                                $endgroup$
                                – Bob Hanlon
                                2 hours ago


















                              • $begingroup$
                                a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                                $endgroup$
                                – zeros
                                6 hours ago










                              • $begingroup$
                                In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                                $endgroup$
                                – Bob Hanlon
                                2 hours ago
















                              $begingroup$
                              a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                              $endgroup$
                              – zeros
                              6 hours ago




                              $begingroup$
                              a doubt the drawings do not come out exact, they leave me incomplete, why is this? img.fenixzone.net/i/nlD72cz.png
                              $endgroup$
                              – zeros
                              6 hours ago












                              $begingroup$
                              In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                              $endgroup$
                              – Bob Hanlon
                              2 hours ago




                              $begingroup$
                              In the first image use of DiscretizeRegion fills the gap. I cannot reproduce any gaps in the third image. Recommend that you try using DiscretizeRegion there as well.
                              $endgroup$
                              – Bob Hanlon
                              2 hours ago



















                              draft saved

                              draft discarded



















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f206447%2fuse-of-the-disk-command%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

                              Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

                              Nicolae Petrescu-Găină Cuprins Biografie | Opera | In memoriam | Varia | Controverse, incertitudini...