Quickest way to find characteristic polynomial from a given matrixWhat is the quickest way to find the...

Movie about a boy who was born old and grew young

Print the string equivalents of a phone number

How were concentration and extermination camp guards recruited?

Did the first version of Linux developed by Linus Torvalds have a GUI?

Turing patterns

Company did not petition for visa in a timely manner. Is asking me to work from overseas, but wants me to take a paycut

How bad would a partial hash leak be, realistically?

Is the term 'open source' a trademark?

Does the "6 seconds per round" rule apply to speaking/roleplaying during combat situations?

Payment instructions from HomeAway look fishy to me

What is the purpose of building foundations?

How do I write "Show, Don't Tell" as a person with Asperger Syndrome?

Do any instruments not produce overtones?

What can plausibly explain many of my very long and low-tech bridges?

Do you need type ratings for private flying?

What LISP compilers and interpreters were available for 8-bit machines?

How hard would it be to convert a glider into an powered electric aircraft?

Building a road to escape Earth's gravity by making a pyramid on Antartica

Should an arbiter claim draw at a K+R vs K+R endgame?

How to generate random points without duplication?

When writing an error prompt, should we end the sentence with a exclamation mark or a dot?

Java guess the number

siunitx error: Invalid numerical input

How many times can you cast a card exiled by Release to the Wind?



Quickest way to find characteristic polynomial from a given matrix


What is the quickest way to find the characteristic polynomial of this matrix?Find the characteristic and minimal polynomial of the given matrixHow do i find eigenvectors for a $3times 3$-matrix when eigenvalues are mixed complex or real?Given a polynomial $P$ and matrix $A$, find matrix $Q$ such that $Q^{-1}P_{(A)}Q=P_{(D)}$Is there a fast way to get the characteristic polynomial of this symmetric matrix?How do you quickly know that this matrix is diagonalisable (characteristic polynomial given)?Find the characteristic polynomial $P_A(lambda)$ of this matrixFind eigenvalue and root subspace of given matrix $A$Is it possible to diagonalize matrix via new basis? (also find this basis and appropriate matrix)Eigenvector of Hess Matrix (Optimisation problem)













2












$begingroup$


Find the Rational form of
$$
A=begin{pmatrix} 1&2&0&4\ :::4&1&2&0\ :::0&4&1&2\ :::2&0&4&1end{pmatrix}
$$



I don't wanna the solution, instead I would like to know a quickest way to calculate $det (lambda I-A)$.
$$
begin{vmatrix}
x-1 &-2 &0 &-4 \
-4&x-1 &-2 &0 \
0&-4 &x-1 & -2 \
-2&0 &-4 &x-1
end{vmatrix}
$$



here I could see the polynomial but the procedure is quite long.
https://www.symbolab.com/solver/matrix-eigenvectors-calculator/eigenvectors%20%5Cbegin%7Bpmatrix%7D1%262%260%264%5C%5C%20%20%20%20%204%261%262%260%5C%5C%20%20%20%20%200%264%261%262%5C%5C%20%20%20%20%202%260%264%261%5Cend%7Bpmatrix%7D










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Find the Rational form of
    $$
    A=begin{pmatrix} 1&2&0&4\ :::4&1&2&0\ :::0&4&1&2\ :::2&0&4&1end{pmatrix}
    $$



    I don't wanna the solution, instead I would like to know a quickest way to calculate $det (lambda I-A)$.
    $$
    begin{vmatrix}
    x-1 &-2 &0 &-4 \
    -4&x-1 &-2 &0 \
    0&-4 &x-1 & -2 \
    -2&0 &-4 &x-1
    end{vmatrix}
    $$



    here I could see the polynomial but the procedure is quite long.
    https://www.symbolab.com/solver/matrix-eigenvectors-calculator/eigenvectors%20%5Cbegin%7Bpmatrix%7D1%262%260%264%5C%5C%20%20%20%20%204%261%262%260%5C%5C%20%20%20%20%200%264%261%262%5C%5C%20%20%20%20%202%260%264%261%5Cend%7Bpmatrix%7D










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Find the Rational form of
      $$
      A=begin{pmatrix} 1&2&0&4\ :::4&1&2&0\ :::0&4&1&2\ :::2&0&4&1end{pmatrix}
      $$



      I don't wanna the solution, instead I would like to know a quickest way to calculate $det (lambda I-A)$.
      $$
      begin{vmatrix}
      x-1 &-2 &0 &-4 \
      -4&x-1 &-2 &0 \
      0&-4 &x-1 & -2 \
      -2&0 &-4 &x-1
      end{vmatrix}
      $$



      here I could see the polynomial but the procedure is quite long.
      https://www.symbolab.com/solver/matrix-eigenvectors-calculator/eigenvectors%20%5Cbegin%7Bpmatrix%7D1%262%260%264%5C%5C%20%20%20%20%204%261%262%260%5C%5C%20%20%20%20%200%264%261%262%5C%5C%20%20%20%20%202%260%264%261%5Cend%7Bpmatrix%7D










      share|cite|improve this question









      $endgroup$




      Find the Rational form of
      $$
      A=begin{pmatrix} 1&2&0&4\ :::4&1&2&0\ :::0&4&1&2\ :::2&0&4&1end{pmatrix}
      $$



      I don't wanna the solution, instead I would like to know a quickest way to calculate $det (lambda I-A)$.
      $$
      begin{vmatrix}
      x-1 &-2 &0 &-4 \
      -4&x-1 &-2 &0 \
      0&-4 &x-1 & -2 \
      -2&0 &-4 &x-1
      end{vmatrix}
      $$



      here I could see the polynomial but the procedure is quite long.
      https://www.symbolab.com/solver/matrix-eigenvectors-calculator/eigenvectors%20%5Cbegin%7Bpmatrix%7D1%262%260%264%5C%5C%20%20%20%20%204%261%262%260%5C%5C%20%20%20%20%200%264%261%262%5C%5C%20%20%20%20%202%260%264%261%5Cend%7Bpmatrix%7D







      linear-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 8 hours ago









      ipreferpiipreferpi

      14511




      14511






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Add columns $,2,3,4,$ to the first one (this is a circulant matrix), and get:



          $$det(t I-A)=begin{vmatrix}t-7&-2&0&-4\
          t-7&t-1&-2&0\
          t-7&-4&t-1&-2\
          t-7&0&-4&t-1end{vmatrix}stackrel{R_i-R_1}=begin{vmatrix}t-7&-2&0&-4\
          0&t+1&-2&4\
          0&-2&t-1&2\
          0&2&-4&t+3end{vmatrix}=$$
          $${}$$



          $$=(t-7)begin{vmatrix}
          t+1&-2&4\
          -2&t-1&2\
          2&-4&t+3end{vmatrix}=(t-7)left[(t^2-1)(t+3)+24+8t+8-4t-12-8t+8right]=$$



          $$=(t-7)left[(t^2-1)(t+3)-4t+28right]=(t-7)left[t^3+3t^2-5t+25right]=$$



          $$=(t-7)(t+5)(t^2-2t+5)=(t+t)(t+5)(t-(1-2i))(t-(1+2i))$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Both answers are great! However I'll choose this one, thank you.
            $endgroup$
            – ipreferpi
            3 hours ago





















          3












          $begingroup$

          The quick way is to realise you have a circulant matrix, so you can immediately write down the determinant
          begin{align*}
          &detbegin{pmatrix}
          x-1 &-2 &0 &-4 \
          -4&x-1 &-2 &0 \
          0&-4 &x-1 & -2 \
          -2&0 &-4 &x-1
          end{pmatrix}\
          &=(x-1-2-4)(x-1-2i+4i)(x-1+2+4)(x-1+2i-4i)
          end{align*}

          since the eigenspaces are $langle(1,i^k,i^{2k},i^{3k})rangle=langle(1,i^k,(-1)^k,(-i)^k)rangle$, for $k=0,1,2,3$.






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            "Since the eigenspaces are..." So you have to know first the eigenspaces?
            $endgroup$
            – DonAntonio
            8 hours ago










          • $begingroup$
            Circulant matrices always have eigenspaces in this form, because these preserve the symmetry and are enough of them. No calculation needed (except to show they are independent, which follows from the vandermonde determinant).
            $endgroup$
            – user10354138
            8 hours ago










          • $begingroup$
            Is there any way only using determinant properties?
            $endgroup$
            – ipreferpi
            7 hours ago






          • 1




            $begingroup$
            Yes, using the basic properties of circulant matrices it is way faster and easier...+1
            $endgroup$
            – DonAntonio
            7 hours ago












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3248886%2fquickest-way-to-find-characteristic-polynomial-from-a-given-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Add columns $,2,3,4,$ to the first one (this is a circulant matrix), and get:



          $$det(t I-A)=begin{vmatrix}t-7&-2&0&-4\
          t-7&t-1&-2&0\
          t-7&-4&t-1&-2\
          t-7&0&-4&t-1end{vmatrix}stackrel{R_i-R_1}=begin{vmatrix}t-7&-2&0&-4\
          0&t+1&-2&4\
          0&-2&t-1&2\
          0&2&-4&t+3end{vmatrix}=$$
          $${}$$



          $$=(t-7)begin{vmatrix}
          t+1&-2&4\
          -2&t-1&2\
          2&-4&t+3end{vmatrix}=(t-7)left[(t^2-1)(t+3)+24+8t+8-4t-12-8t+8right]=$$



          $$=(t-7)left[(t^2-1)(t+3)-4t+28right]=(t-7)left[t^3+3t^2-5t+25right]=$$



          $$=(t-7)(t+5)(t^2-2t+5)=(t+t)(t+5)(t-(1-2i))(t-(1+2i))$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Both answers are great! However I'll choose this one, thank you.
            $endgroup$
            – ipreferpi
            3 hours ago


















          4












          $begingroup$

          Add columns $,2,3,4,$ to the first one (this is a circulant matrix), and get:



          $$det(t I-A)=begin{vmatrix}t-7&-2&0&-4\
          t-7&t-1&-2&0\
          t-7&-4&t-1&-2\
          t-7&0&-4&t-1end{vmatrix}stackrel{R_i-R_1}=begin{vmatrix}t-7&-2&0&-4\
          0&t+1&-2&4\
          0&-2&t-1&2\
          0&2&-4&t+3end{vmatrix}=$$
          $${}$$



          $$=(t-7)begin{vmatrix}
          t+1&-2&4\
          -2&t-1&2\
          2&-4&t+3end{vmatrix}=(t-7)left[(t^2-1)(t+3)+24+8t+8-4t-12-8t+8right]=$$



          $$=(t-7)left[(t^2-1)(t+3)-4t+28right]=(t-7)left[t^3+3t^2-5t+25right]=$$



          $$=(t-7)(t+5)(t^2-2t+5)=(t+t)(t+5)(t-(1-2i))(t-(1+2i))$$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Both answers are great! However I'll choose this one, thank you.
            $endgroup$
            – ipreferpi
            3 hours ago
















          4












          4








          4





          $begingroup$

          Add columns $,2,3,4,$ to the first one (this is a circulant matrix), and get:



          $$det(t I-A)=begin{vmatrix}t-7&-2&0&-4\
          t-7&t-1&-2&0\
          t-7&-4&t-1&-2\
          t-7&0&-4&t-1end{vmatrix}stackrel{R_i-R_1}=begin{vmatrix}t-7&-2&0&-4\
          0&t+1&-2&4\
          0&-2&t-1&2\
          0&2&-4&t+3end{vmatrix}=$$
          $${}$$



          $$=(t-7)begin{vmatrix}
          t+1&-2&4\
          -2&t-1&2\
          2&-4&t+3end{vmatrix}=(t-7)left[(t^2-1)(t+3)+24+8t+8-4t-12-8t+8right]=$$



          $$=(t-7)left[(t^2-1)(t+3)-4t+28right]=(t-7)left[t^3+3t^2-5t+25right]=$$



          $$=(t-7)(t+5)(t^2-2t+5)=(t+t)(t+5)(t-(1-2i))(t-(1+2i))$$






          share|cite|improve this answer









          $endgroup$



          Add columns $,2,3,4,$ to the first one (this is a circulant matrix), and get:



          $$det(t I-A)=begin{vmatrix}t-7&-2&0&-4\
          t-7&t-1&-2&0\
          t-7&-4&t-1&-2\
          t-7&0&-4&t-1end{vmatrix}stackrel{R_i-R_1}=begin{vmatrix}t-7&-2&0&-4\
          0&t+1&-2&4\
          0&-2&t-1&2\
          0&2&-4&t+3end{vmatrix}=$$
          $${}$$



          $$=(t-7)begin{vmatrix}
          t+1&-2&4\
          -2&t-1&2\
          2&-4&t+3end{vmatrix}=(t-7)left[(t^2-1)(t+3)+24+8t+8-4t-12-8t+8right]=$$



          $$=(t-7)left[(t^2-1)(t+3)-4t+28right]=(t-7)left[t^3+3t^2-5t+25right]=$$



          $$=(t-7)(t+5)(t^2-2t+5)=(t+t)(t+5)(t-(1-2i))(t-(1+2i))$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 7 hours ago









          DonAntonioDonAntonio

          182k1497234




          182k1497234












          • $begingroup$
            Both answers are great! However I'll choose this one, thank you.
            $endgroup$
            – ipreferpi
            3 hours ago




















          • $begingroup$
            Both answers are great! However I'll choose this one, thank you.
            $endgroup$
            – ipreferpi
            3 hours ago


















          $begingroup$
          Both answers are great! However I'll choose this one, thank you.
          $endgroup$
          – ipreferpi
          3 hours ago






          $begingroup$
          Both answers are great! However I'll choose this one, thank you.
          $endgroup$
          – ipreferpi
          3 hours ago













          3












          $begingroup$

          The quick way is to realise you have a circulant matrix, so you can immediately write down the determinant
          begin{align*}
          &detbegin{pmatrix}
          x-1 &-2 &0 &-4 \
          -4&x-1 &-2 &0 \
          0&-4 &x-1 & -2 \
          -2&0 &-4 &x-1
          end{pmatrix}\
          &=(x-1-2-4)(x-1-2i+4i)(x-1+2+4)(x-1+2i-4i)
          end{align*}

          since the eigenspaces are $langle(1,i^k,i^{2k},i^{3k})rangle=langle(1,i^k,(-1)^k,(-i)^k)rangle$, for $k=0,1,2,3$.






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            "Since the eigenspaces are..." So you have to know first the eigenspaces?
            $endgroup$
            – DonAntonio
            8 hours ago










          • $begingroup$
            Circulant matrices always have eigenspaces in this form, because these preserve the symmetry and are enough of them. No calculation needed (except to show they are independent, which follows from the vandermonde determinant).
            $endgroup$
            – user10354138
            8 hours ago










          • $begingroup$
            Is there any way only using determinant properties?
            $endgroup$
            – ipreferpi
            7 hours ago






          • 1




            $begingroup$
            Yes, using the basic properties of circulant matrices it is way faster and easier...+1
            $endgroup$
            – DonAntonio
            7 hours ago
















          3












          $begingroup$

          The quick way is to realise you have a circulant matrix, so you can immediately write down the determinant
          begin{align*}
          &detbegin{pmatrix}
          x-1 &-2 &0 &-4 \
          -4&x-1 &-2 &0 \
          0&-4 &x-1 & -2 \
          -2&0 &-4 &x-1
          end{pmatrix}\
          &=(x-1-2-4)(x-1-2i+4i)(x-1+2+4)(x-1+2i-4i)
          end{align*}

          since the eigenspaces are $langle(1,i^k,i^{2k},i^{3k})rangle=langle(1,i^k,(-1)^k,(-i)^k)rangle$, for $k=0,1,2,3$.






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            "Since the eigenspaces are..." So you have to know first the eigenspaces?
            $endgroup$
            – DonAntonio
            8 hours ago










          • $begingroup$
            Circulant matrices always have eigenspaces in this form, because these preserve the symmetry and are enough of them. No calculation needed (except to show they are independent, which follows from the vandermonde determinant).
            $endgroup$
            – user10354138
            8 hours ago










          • $begingroup$
            Is there any way only using determinant properties?
            $endgroup$
            – ipreferpi
            7 hours ago






          • 1




            $begingroup$
            Yes, using the basic properties of circulant matrices it is way faster and easier...+1
            $endgroup$
            – DonAntonio
            7 hours ago














          3












          3








          3





          $begingroup$

          The quick way is to realise you have a circulant matrix, so you can immediately write down the determinant
          begin{align*}
          &detbegin{pmatrix}
          x-1 &-2 &0 &-4 \
          -4&x-1 &-2 &0 \
          0&-4 &x-1 & -2 \
          -2&0 &-4 &x-1
          end{pmatrix}\
          &=(x-1-2-4)(x-1-2i+4i)(x-1+2+4)(x-1+2i-4i)
          end{align*}

          since the eigenspaces are $langle(1,i^k,i^{2k},i^{3k})rangle=langle(1,i^k,(-1)^k,(-i)^k)rangle$, for $k=0,1,2,3$.






          share|cite|improve this answer









          $endgroup$



          The quick way is to realise you have a circulant matrix, so you can immediately write down the determinant
          begin{align*}
          &detbegin{pmatrix}
          x-1 &-2 &0 &-4 \
          -4&x-1 &-2 &0 \
          0&-4 &x-1 & -2 \
          -2&0 &-4 &x-1
          end{pmatrix}\
          &=(x-1-2-4)(x-1-2i+4i)(x-1+2+4)(x-1+2i-4i)
          end{align*}

          since the eigenspaces are $langle(1,i^k,i^{2k},i^{3k})rangle=langle(1,i^k,(-1)^k,(-i)^k)rangle$, for $k=0,1,2,3$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 8 hours ago









          user10354138user10354138

          12.2k21125




          12.2k21125








          • 1




            $begingroup$
            "Since the eigenspaces are..." So you have to know first the eigenspaces?
            $endgroup$
            – DonAntonio
            8 hours ago










          • $begingroup$
            Circulant matrices always have eigenspaces in this form, because these preserve the symmetry and are enough of them. No calculation needed (except to show they are independent, which follows from the vandermonde determinant).
            $endgroup$
            – user10354138
            8 hours ago










          • $begingroup$
            Is there any way only using determinant properties?
            $endgroup$
            – ipreferpi
            7 hours ago






          • 1




            $begingroup$
            Yes, using the basic properties of circulant matrices it is way faster and easier...+1
            $endgroup$
            – DonAntonio
            7 hours ago














          • 1




            $begingroup$
            "Since the eigenspaces are..." So you have to know first the eigenspaces?
            $endgroup$
            – DonAntonio
            8 hours ago










          • $begingroup$
            Circulant matrices always have eigenspaces in this form, because these preserve the symmetry and are enough of them. No calculation needed (except to show they are independent, which follows from the vandermonde determinant).
            $endgroup$
            – user10354138
            8 hours ago










          • $begingroup$
            Is there any way only using determinant properties?
            $endgroup$
            – ipreferpi
            7 hours ago






          • 1




            $begingroup$
            Yes, using the basic properties of circulant matrices it is way faster and easier...+1
            $endgroup$
            – DonAntonio
            7 hours ago








          1




          1




          $begingroup$
          "Since the eigenspaces are..." So you have to know first the eigenspaces?
          $endgroup$
          – DonAntonio
          8 hours ago




          $begingroup$
          "Since the eigenspaces are..." So you have to know first the eigenspaces?
          $endgroup$
          – DonAntonio
          8 hours ago












          $begingroup$
          Circulant matrices always have eigenspaces in this form, because these preserve the symmetry and are enough of them. No calculation needed (except to show they are independent, which follows from the vandermonde determinant).
          $endgroup$
          – user10354138
          8 hours ago




          $begingroup$
          Circulant matrices always have eigenspaces in this form, because these preserve the symmetry and are enough of them. No calculation needed (except to show they are independent, which follows from the vandermonde determinant).
          $endgroup$
          – user10354138
          8 hours ago












          $begingroup$
          Is there any way only using determinant properties?
          $endgroup$
          – ipreferpi
          7 hours ago




          $begingroup$
          Is there any way only using determinant properties?
          $endgroup$
          – ipreferpi
          7 hours ago




          1




          1




          $begingroup$
          Yes, using the basic properties of circulant matrices it is way faster and easier...+1
          $endgroup$
          – DonAntonio
          7 hours ago




          $begingroup$
          Yes, using the basic properties of circulant matrices it is way faster and easier...+1
          $endgroup$
          – DonAntonio
          7 hours ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3248886%2fquickest-way-to-find-characteristic-polynomial-from-a-given-matrix%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Taj Mahal Inhaltsverzeichnis Aufbau | Geschichte | 350-Jahr-Feier | Heutige Bedeutung | Siehe auch |...

          Baia Sprie Cuprins Etimologie | Istorie | Demografie | Politică și administrație | Arii naturale...

          Ciclooctatetraenă Vezi și | Bibliografie | Meniu de navigare637866text4148569-500570979m