Idiomatic way to prevent slicing? The 2019 Stack Overflow Developer Survey Results Are InForce...
Is there a symbol for a right arrow with a square in the middle?
How to type this arrow in math mode?
Which Sci-Fi work first showed weapon of galactic-scale mass destruction?
The difference between dialogue marks
How come people say “Would of”?
Is this app Icon Browser Safe/Legit?
What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?
Right tool to dig six foot holes?
Is three citations per paragraph excessive for undergraduate research paper?
Multiply Two Integer Polynomials
Can a flute soloist sit?
Are spiders unable to hurt humans, especially very small spiders?
During Temple times, who can butcher a kosher animal?
Is "plugging out" electronic devices an American expression?
Does the shape of a die affect the probability of a number being rolled?
Shouldn't "much" here be used instead of "more"?
A poker game description that does not feel gimmicky
What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?
Is an up-to-date browser secure on an out-of-date OS?
Why didn't the Event Horizon Telescope team mention Sagittarius A*?
Why not take a picture of a closer black hole?
Does a dangling wire really electrocute me if I'm standing in water?
Button changing it's text & action. Good or terrible?
FPGA - DIY Programming
Idiomatic way to prevent slicing?
The 2019 Stack Overflow Developer Survey Results Are InForce function to be called only with specific typesWhat's the best way to trim std::string?What is object slicing?What's the point of g++ -Wreorder?Easiest way to convert int to string in C++Does the C++ spec allow an instance of a non-virtual class to include memory for a vtable pointer?capture variables inside of subclass?Detecting if a type can be derived from in C++C++ overload function by return typeIs using inline classes inside a function permitted to be used as template types?Short-circuit evaluation and assignment in C++
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
Sometimes it can be an annoyance that c++ defaults to allow slicing. For example
#include <iostream>
struct foo { int a; };
struct bar : foo { int b; };
int main() {
bar x{1,2};
foo y = x; // <- I dont want this to compile!
}
This compiles and runs as expected! Though, what if I dont want to enable slicing?
What is the idomatic way to write foo
such that one cannot slice instances of any derived class?
c++ inheritance object-slicing
add a comment |
Sometimes it can be an annoyance that c++ defaults to allow slicing. For example
#include <iostream>
struct foo { int a; };
struct bar : foo { int b; };
int main() {
bar x{1,2};
foo y = x; // <- I dont want this to compile!
}
This compiles and runs as expected! Though, what if I dont want to enable slicing?
What is the idomatic way to write foo
such that one cannot slice instances of any derived class?
c++ inheritance object-slicing
add a comment |
Sometimes it can be an annoyance that c++ defaults to allow slicing. For example
#include <iostream>
struct foo { int a; };
struct bar : foo { int b; };
int main() {
bar x{1,2};
foo y = x; // <- I dont want this to compile!
}
This compiles and runs as expected! Though, what if I dont want to enable slicing?
What is the idomatic way to write foo
such that one cannot slice instances of any derived class?
c++ inheritance object-slicing
Sometimes it can be an annoyance that c++ defaults to allow slicing. For example
#include <iostream>
struct foo { int a; };
struct bar : foo { int b; };
int main() {
bar x{1,2};
foo y = x; // <- I dont want this to compile!
}
This compiles and runs as expected! Though, what if I dont want to enable slicing?
What is the idomatic way to write foo
such that one cannot slice instances of any derived class?
c++ inheritance object-slicing
c++ inheritance object-slicing
edited yesterday
rrauenza
3,56921835
3,56921835
asked yesterday
user463035818user463035818
18.8k42971
18.8k42971
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
I'm not sure if there is a named idiom for it but you can add a deleted function to the overload set that is a better match then the base classes slicing operations. If you change foo
to
struct foo
{
int a;
foo() = default; // you have to add this because of the template constructor
template<typename T>
foo(const T&) = delete; // error trying to copy anything but a foo
template<typename T>
foo& operator=(const T&) = delete; // error assigning anything else but a foo
};
then you can only ever copy construct or copy assign a foo
to foo
. Any other type will pick the function template and you'll get an error about using a deleted function. This does mean that your class, and the classes that use it can no longer be an aggregate though. Since the members that are added are templates, they are not considered copy constructors or copy assignment operators so you'll get the default copy and move constructors and assignment operators.
Note that this doesn't prevent explicit slicing like this:foo y = static_cast<foo&>(x);
. That said, perhaps it's not a problem to OP.
– eerorika
yesterday
if I understand correctly this is a nice way to prevent implicit conversions for function parameters in general
– user463035818
yesterday
1
@user463035818 Yep. I've been using it since I've asked that Q.
– NathanOliver
yesterday
3
I look at it as reverse SFINAE. You make the overloads you want to compile, and then add a deleted template stopping everything else.
– NathanOliver
yesterday
actually I was a bit hestitant to accept this answer. The technique is great, but in fact it opens the door to specializing all kinds of unwanted assignments, though if I have to choose between the javaish "protect against every possible stupidity at any cost" vs a pythonic "we are all adults" then I know what to pick ;)
– user463035818
17 hours ago
|
show 1 more comment
Since 2011, the idiomatic way has been to use auto
:
#include <iostream>
struct foo { int a; };
struct bar : foo { int b; };
int main() {
bar x{1,2};
auto y = x; // <- y is a bar
}
If you wish to actively prevent slicing, there are a number of ways:
Usually the most preferable way, unless you specifically need inheritance (you often don't) is to use encapsulation:
#include <iostream>
struct foo { int a; };
struct bar
{
bar(int a, int b)
: foo_(a)
, b(b)
{}
int b;
int get_a() const { return foo_.a; }
private:
foo foo_;
};
int main() {
bar x{1,2};
// foo y = x; // <- does not compile
}
Another more specialised way might be to alter the permissions around copy operators:
#include <iostream>
struct foo {
int a;
protected:
foo(foo const&) = default;
foo(foo&&) = default;
foo& operator=(foo const&) = default;
foo& operator=(foo&&) = default;
};
struct bar : foo
{
bar(int a, int b)
: foo{a}, b{b}
{}
int b;
};
int main() {
auto x = bar (1,2);
// foo y = x; // <- does not compile
}
add a comment |
You can prevent the base from being copied outside of member functions of derived classes and the base itself by declaring the copy constructor protected:
struct foo {
// ...
protected:
foo(foo&) = default;
};
4
but then I cannot copyfoo
s anymore :( I'd like to prevent only copying a bar to a foo if possible
– user463035818
yesterday
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55600025%2fidiomatic-way-to-prevent-slicing%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
I'm not sure if there is a named idiom for it but you can add a deleted function to the overload set that is a better match then the base classes slicing operations. If you change foo
to
struct foo
{
int a;
foo() = default; // you have to add this because of the template constructor
template<typename T>
foo(const T&) = delete; // error trying to copy anything but a foo
template<typename T>
foo& operator=(const T&) = delete; // error assigning anything else but a foo
};
then you can only ever copy construct or copy assign a foo
to foo
. Any other type will pick the function template and you'll get an error about using a deleted function. This does mean that your class, and the classes that use it can no longer be an aggregate though. Since the members that are added are templates, they are not considered copy constructors or copy assignment operators so you'll get the default copy and move constructors and assignment operators.
Note that this doesn't prevent explicit slicing like this:foo y = static_cast<foo&>(x);
. That said, perhaps it's not a problem to OP.
– eerorika
yesterday
if I understand correctly this is a nice way to prevent implicit conversions for function parameters in general
– user463035818
yesterday
1
@user463035818 Yep. I've been using it since I've asked that Q.
– NathanOliver
yesterday
3
I look at it as reverse SFINAE. You make the overloads you want to compile, and then add a deleted template stopping everything else.
– NathanOliver
yesterday
actually I was a bit hestitant to accept this answer. The technique is great, but in fact it opens the door to specializing all kinds of unwanted assignments, though if I have to choose between the javaish "protect against every possible stupidity at any cost" vs a pythonic "we are all adults" then I know what to pick ;)
– user463035818
17 hours ago
|
show 1 more comment
I'm not sure if there is a named idiom for it but you can add a deleted function to the overload set that is a better match then the base classes slicing operations. If you change foo
to
struct foo
{
int a;
foo() = default; // you have to add this because of the template constructor
template<typename T>
foo(const T&) = delete; // error trying to copy anything but a foo
template<typename T>
foo& operator=(const T&) = delete; // error assigning anything else but a foo
};
then you can only ever copy construct or copy assign a foo
to foo
. Any other type will pick the function template and you'll get an error about using a deleted function. This does mean that your class, and the classes that use it can no longer be an aggregate though. Since the members that are added are templates, they are not considered copy constructors or copy assignment operators so you'll get the default copy and move constructors and assignment operators.
Note that this doesn't prevent explicit slicing like this:foo y = static_cast<foo&>(x);
. That said, perhaps it's not a problem to OP.
– eerorika
yesterday
if I understand correctly this is a nice way to prevent implicit conversions for function parameters in general
– user463035818
yesterday
1
@user463035818 Yep. I've been using it since I've asked that Q.
– NathanOliver
yesterday
3
I look at it as reverse SFINAE. You make the overloads you want to compile, and then add a deleted template stopping everything else.
– NathanOliver
yesterday
actually I was a bit hestitant to accept this answer. The technique is great, but in fact it opens the door to specializing all kinds of unwanted assignments, though if I have to choose between the javaish "protect against every possible stupidity at any cost" vs a pythonic "we are all adults" then I know what to pick ;)
– user463035818
17 hours ago
|
show 1 more comment
I'm not sure if there is a named idiom for it but you can add a deleted function to the overload set that is a better match then the base classes slicing operations. If you change foo
to
struct foo
{
int a;
foo() = default; // you have to add this because of the template constructor
template<typename T>
foo(const T&) = delete; // error trying to copy anything but a foo
template<typename T>
foo& operator=(const T&) = delete; // error assigning anything else but a foo
};
then you can only ever copy construct or copy assign a foo
to foo
. Any other type will pick the function template and you'll get an error about using a deleted function. This does mean that your class, and the classes that use it can no longer be an aggregate though. Since the members that are added are templates, they are not considered copy constructors or copy assignment operators so you'll get the default copy and move constructors and assignment operators.
I'm not sure if there is a named idiom for it but you can add a deleted function to the overload set that is a better match then the base classes slicing operations. If you change foo
to
struct foo
{
int a;
foo() = default; // you have to add this because of the template constructor
template<typename T>
foo(const T&) = delete; // error trying to copy anything but a foo
template<typename T>
foo& operator=(const T&) = delete; // error assigning anything else but a foo
};
then you can only ever copy construct or copy assign a foo
to foo
. Any other type will pick the function template and you'll get an error about using a deleted function. This does mean that your class, and the classes that use it can no longer be an aggregate though. Since the members that are added are templates, they are not considered copy constructors or copy assignment operators so you'll get the default copy and move constructors and assignment operators.
edited yesterday
answered yesterday
NathanOliverNathanOliver
98.5k16138218
98.5k16138218
Note that this doesn't prevent explicit slicing like this:foo y = static_cast<foo&>(x);
. That said, perhaps it's not a problem to OP.
– eerorika
yesterday
if I understand correctly this is a nice way to prevent implicit conversions for function parameters in general
– user463035818
yesterday
1
@user463035818 Yep. I've been using it since I've asked that Q.
– NathanOliver
yesterday
3
I look at it as reverse SFINAE. You make the overloads you want to compile, and then add a deleted template stopping everything else.
– NathanOliver
yesterday
actually I was a bit hestitant to accept this answer. The technique is great, but in fact it opens the door to specializing all kinds of unwanted assignments, though if I have to choose between the javaish "protect against every possible stupidity at any cost" vs a pythonic "we are all adults" then I know what to pick ;)
– user463035818
17 hours ago
|
show 1 more comment
Note that this doesn't prevent explicit slicing like this:foo y = static_cast<foo&>(x);
. That said, perhaps it's not a problem to OP.
– eerorika
yesterday
if I understand correctly this is a nice way to prevent implicit conversions for function parameters in general
– user463035818
yesterday
1
@user463035818 Yep. I've been using it since I've asked that Q.
– NathanOliver
yesterday
3
I look at it as reverse SFINAE. You make the overloads you want to compile, and then add a deleted template stopping everything else.
– NathanOliver
yesterday
actually I was a bit hestitant to accept this answer. The technique is great, but in fact it opens the door to specializing all kinds of unwanted assignments, though if I have to choose between the javaish "protect against every possible stupidity at any cost" vs a pythonic "we are all adults" then I know what to pick ;)
– user463035818
17 hours ago
Note that this doesn't prevent explicit slicing like this:
foo y = static_cast<foo&>(x);
. That said, perhaps it's not a problem to OP.– eerorika
yesterday
Note that this doesn't prevent explicit slicing like this:
foo y = static_cast<foo&>(x);
. That said, perhaps it's not a problem to OP.– eerorika
yesterday
if I understand correctly this is a nice way to prevent implicit conversions for function parameters in general
– user463035818
yesterday
if I understand correctly this is a nice way to prevent implicit conversions for function parameters in general
– user463035818
yesterday
1
1
@user463035818 Yep. I've been using it since I've asked that Q.
– NathanOliver
yesterday
@user463035818 Yep. I've been using it since I've asked that Q.
– NathanOliver
yesterday
3
3
I look at it as reverse SFINAE. You make the overloads you want to compile, and then add a deleted template stopping everything else.
– NathanOliver
yesterday
I look at it as reverse SFINAE. You make the overloads you want to compile, and then add a deleted template stopping everything else.
– NathanOliver
yesterday
actually I was a bit hestitant to accept this answer. The technique is great, but in fact it opens the door to specializing all kinds of unwanted assignments, though if I have to choose between the javaish "protect against every possible stupidity at any cost" vs a pythonic "we are all adults" then I know what to pick ;)
– user463035818
17 hours ago
actually I was a bit hestitant to accept this answer. The technique is great, but in fact it opens the door to specializing all kinds of unwanted assignments, though if I have to choose between the javaish "protect against every possible stupidity at any cost" vs a pythonic "we are all adults" then I know what to pick ;)
– user463035818
17 hours ago
|
show 1 more comment
Since 2011, the idiomatic way has been to use auto
:
#include <iostream>
struct foo { int a; };
struct bar : foo { int b; };
int main() {
bar x{1,2};
auto y = x; // <- y is a bar
}
If you wish to actively prevent slicing, there are a number of ways:
Usually the most preferable way, unless you specifically need inheritance (you often don't) is to use encapsulation:
#include <iostream>
struct foo { int a; };
struct bar
{
bar(int a, int b)
: foo_(a)
, b(b)
{}
int b;
int get_a() const { return foo_.a; }
private:
foo foo_;
};
int main() {
bar x{1,2};
// foo y = x; // <- does not compile
}
Another more specialised way might be to alter the permissions around copy operators:
#include <iostream>
struct foo {
int a;
protected:
foo(foo const&) = default;
foo(foo&&) = default;
foo& operator=(foo const&) = default;
foo& operator=(foo&&) = default;
};
struct bar : foo
{
bar(int a, int b)
: foo{a}, b{b}
{}
int b;
};
int main() {
auto x = bar (1,2);
// foo y = x; // <- does not compile
}
add a comment |
Since 2011, the idiomatic way has been to use auto
:
#include <iostream>
struct foo { int a; };
struct bar : foo { int b; };
int main() {
bar x{1,2};
auto y = x; // <- y is a bar
}
If you wish to actively prevent slicing, there are a number of ways:
Usually the most preferable way, unless you specifically need inheritance (you often don't) is to use encapsulation:
#include <iostream>
struct foo { int a; };
struct bar
{
bar(int a, int b)
: foo_(a)
, b(b)
{}
int b;
int get_a() const { return foo_.a; }
private:
foo foo_;
};
int main() {
bar x{1,2};
// foo y = x; // <- does not compile
}
Another more specialised way might be to alter the permissions around copy operators:
#include <iostream>
struct foo {
int a;
protected:
foo(foo const&) = default;
foo(foo&&) = default;
foo& operator=(foo const&) = default;
foo& operator=(foo&&) = default;
};
struct bar : foo
{
bar(int a, int b)
: foo{a}, b{b}
{}
int b;
};
int main() {
auto x = bar (1,2);
// foo y = x; // <- does not compile
}
add a comment |
Since 2011, the idiomatic way has been to use auto
:
#include <iostream>
struct foo { int a; };
struct bar : foo { int b; };
int main() {
bar x{1,2};
auto y = x; // <- y is a bar
}
If you wish to actively prevent slicing, there are a number of ways:
Usually the most preferable way, unless you specifically need inheritance (you often don't) is to use encapsulation:
#include <iostream>
struct foo { int a; };
struct bar
{
bar(int a, int b)
: foo_(a)
, b(b)
{}
int b;
int get_a() const { return foo_.a; }
private:
foo foo_;
};
int main() {
bar x{1,2};
// foo y = x; // <- does not compile
}
Another more specialised way might be to alter the permissions around copy operators:
#include <iostream>
struct foo {
int a;
protected:
foo(foo const&) = default;
foo(foo&&) = default;
foo& operator=(foo const&) = default;
foo& operator=(foo&&) = default;
};
struct bar : foo
{
bar(int a, int b)
: foo{a}, b{b}
{}
int b;
};
int main() {
auto x = bar (1,2);
// foo y = x; // <- does not compile
}
Since 2011, the idiomatic way has been to use auto
:
#include <iostream>
struct foo { int a; };
struct bar : foo { int b; };
int main() {
bar x{1,2};
auto y = x; // <- y is a bar
}
If you wish to actively prevent slicing, there are a number of ways:
Usually the most preferable way, unless you specifically need inheritance (you often don't) is to use encapsulation:
#include <iostream>
struct foo { int a; };
struct bar
{
bar(int a, int b)
: foo_(a)
, b(b)
{}
int b;
int get_a() const { return foo_.a; }
private:
foo foo_;
};
int main() {
bar x{1,2};
// foo y = x; // <- does not compile
}
Another more specialised way might be to alter the permissions around copy operators:
#include <iostream>
struct foo {
int a;
protected:
foo(foo const&) = default;
foo(foo&&) = default;
foo& operator=(foo const&) = default;
foo& operator=(foo&&) = default;
};
struct bar : foo
{
bar(int a, int b)
: foo{a}, b{b}
{}
int b;
};
int main() {
auto x = bar (1,2);
// foo y = x; // <- does not compile
}
answered yesterday
Richard HodgesRichard Hodges
57k658105
57k658105
add a comment |
add a comment |
You can prevent the base from being copied outside of member functions of derived classes and the base itself by declaring the copy constructor protected:
struct foo {
// ...
protected:
foo(foo&) = default;
};
4
but then I cannot copyfoo
s anymore :( I'd like to prevent only copying a bar to a foo if possible
– user463035818
yesterday
add a comment |
You can prevent the base from being copied outside of member functions of derived classes and the base itself by declaring the copy constructor protected:
struct foo {
// ...
protected:
foo(foo&) = default;
};
4
but then I cannot copyfoo
s anymore :( I'd like to prevent only copying a bar to a foo if possible
– user463035818
yesterday
add a comment |
You can prevent the base from being copied outside of member functions of derived classes and the base itself by declaring the copy constructor protected:
struct foo {
// ...
protected:
foo(foo&) = default;
};
You can prevent the base from being copied outside of member functions of derived classes and the base itself by declaring the copy constructor protected:
struct foo {
// ...
protected:
foo(foo&) = default;
};
answered yesterday
eerorikaeerorika
89.9k664136
89.9k664136
4
but then I cannot copyfoo
s anymore :( I'd like to prevent only copying a bar to a foo if possible
– user463035818
yesterday
add a comment |
4
but then I cannot copyfoo
s anymore :( I'd like to prevent only copying a bar to a foo if possible
– user463035818
yesterday
4
4
but then I cannot copy
foo
s anymore :( I'd like to prevent only copying a bar to a foo if possible– user463035818
yesterday
but then I cannot copy
foo
s anymore :( I'd like to prevent only copying a bar to a foo if possible– user463035818
yesterday
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55600025%2fidiomatic-way-to-prevent-slicing%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown