What technology would Dwarves need to forge titanium?What alloy could replace brass in most applications?What...
Failing students when it might cause them economic ruin
Do high-wing aircraft represent more difficult engineering challenges than low-wing aircraft?
Working hours and productivity expectations for game artists and programmers
Why are there five extra turns in tournament Magic?
How can we delete item permanently without storing in Recycle Bin?
Why does string strummed with finger sound different from the one strummed with pick?
Why didn't Daenerys' advisers suggest assassinating Cersei?
Why use a retrograde orbit?
When did Britain learn about American independence?
How can I make dummy text (like lipsum) grey?
Is it standard to have the first week's pay indefinitely withheld?
Would it be fair to use 1d30 (instead of rolling 2d20 and taking the higher die) for advantage rolls?
Is Big Ben visible from the British museum?
Is it possible to pass a pointer to an operator as an argument like a pointer to a function?
Solenoid fastest possible release - for how long should reversed polarity be applied?
Can a person still be an Orthodox Jew and believe that the Torah contains narratives that are not scientifically correct?
How long do Aarakocra live?
Does a non-singular matrix have a large minor with disjoint rows and columns and full rank?
Usage of the relative pronoun "dont"
Why did the soldiers of the North disobey Jon?
Is there a method to separate iron from mercury?
When the match time is called, does the current turn end immediately?
AD: OU for system administrator accounts
SHAKE-128/256 or SHA3-256/512
What technology would Dwarves need to forge titanium?
What alloy could replace brass in most applications?What Limitations or Modifications Would Medieval Armor or Weapons Have if Modern Quality Steel Were Used?How would fantasy dwarves produce steel?What kind of weapon would you need to level an entire city to glass?Creating a medieval dropforgeWhat is the highest quality method to produce steel with late medieval technology?Is there any reason to use tungsten crucibles?What would the atomic structure of 'perfect' steel be like?What tool would a Roman-age civilization have for the breaking of silver and other metals into dust?With today's technology, could iron be smelted at La Rinconada?
$begingroup$
The Dwarves pride themselves as great craftsman, smiths, and tinkerers. Dwarven craftsmen have access to not only the metals of man, but also metals only the forges of dwarves can refine. One of these metals would be Titanium. What pieces of technology would Dwarves need to refine Titanium?
Note:
I'm more woried about the equipment and specific technology needed to forge Titanium. Some technology with obviously be beyond the standard of my universe (Medieval High Period), but as long as it isn't anything way beyond this period (ex: 18th century) it still works.
metalworking forging
$endgroup$
add a comment |
$begingroup$
The Dwarves pride themselves as great craftsman, smiths, and tinkerers. Dwarven craftsmen have access to not only the metals of man, but also metals only the forges of dwarves can refine. One of these metals would be Titanium. What pieces of technology would Dwarves need to refine Titanium?
Note:
I'm more woried about the equipment and specific technology needed to forge Titanium. Some technology with obviously be beyond the standard of my universe (Medieval High Period), but as long as it isn't anything way beyond this period (ex: 18th century) it still works.
metalworking forging
$endgroup$
add a comment |
$begingroup$
The Dwarves pride themselves as great craftsman, smiths, and tinkerers. Dwarven craftsmen have access to not only the metals of man, but also metals only the forges of dwarves can refine. One of these metals would be Titanium. What pieces of technology would Dwarves need to refine Titanium?
Note:
I'm more woried about the equipment and specific technology needed to forge Titanium. Some technology with obviously be beyond the standard of my universe (Medieval High Period), but as long as it isn't anything way beyond this period (ex: 18th century) it still works.
metalworking forging
$endgroup$
The Dwarves pride themselves as great craftsman, smiths, and tinkerers. Dwarven craftsmen have access to not only the metals of man, but also metals only the forges of dwarves can refine. One of these metals would be Titanium. What pieces of technology would Dwarves need to refine Titanium?
Note:
I'm more woried about the equipment and specific technology needed to forge Titanium. Some technology with obviously be beyond the standard of my universe (Medieval High Period), but as long as it isn't anything way beyond this period (ex: 18th century) it still works.
metalworking forging
metalworking forging
asked 2 hours ago
Celestial Dragon EmperorCelestial Dragon Emperor
3,33532049
3,33532049
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The earliest process discovered that could produce metallic titanium was developed in 1910, and is called the Hunter Process. It involves a chemical reaction between titanium tetrachloride, and metallic sodium; thus, it requires a reasonably well developed understanding of chemistry.
Titanium does not occur in a native form, instead the only forms useful to the production of metal are Rutile and Ilmenite. Because of this, there is no simpler way to produce metallic titanium.
$endgroup$
$begingroup$
In addition, Titanium is apparently quite reactive with oxygen and is smelted in a sealed steel furnace with an argon atmosphere. So, just a touch past the 18th century! Titanium processing The long and short of it is they'd need the same technology pyramid that led to our being able to refine it.
$endgroup$
– elemtilas
1 hour ago
$begingroup$
@Arkenstein could you have the dwarves have a very developed understanding of chemistry without modern technology? I feel like brilliant alchemists could eventually figure something out.
$endgroup$
– Celestial Dragon Emperor
1 hour ago
$begingroup$
@CelestialDragonEmperor Alchemy and chemistry were actually just two different words for the same thing until the 1800s, or thereabout. Chemistry just changed the name so they wouldn't be associated with the impossible stuff (like transmutation) so it would be pretty fair to say dwarves have a strong chemical knowledge if you're giving them alchemical knowledge
$endgroup$
– Halfthawed
1 hour ago
$begingroup$
Well, metallic sodium was first produced in the late 1800s using a carbothermic reaction that requires sodium carbonate to be heated to 1100C. In order to produce titanium tetrachloride, you need to isolate chlorine, which was not recognised as an element in our history until the 1700s. Basically, titanium quite solidly belongs to the industrial era.
$endgroup$
– Arkenstein XII
1 hour ago
add a comment |
$begingroup$
For refining, deadly chlorine must be mastered, then either magnesium or sodium. An oxygen free furnace at 1200C is necessary. That is going to be difficult or impossible to achieve without either large amounts of electricity (vacuum chambers, electric heat), or pure inert gas(argon shielding atmosphere isolated from flame furnace). The oxygen free environment is also required after refining any time it is to be forged, welded or annealed.
$endgroup$
$begingroup$
Of course, if there were a magical means to eliminate oxygen from the furnace....
$endgroup$
– Arkenstein XII
43 mins ago
add a comment |
$begingroup$
They would need electrolysis. Not for refining the titanium directly, but for preparing the other chemical agents needed for titanium refinement. Specifically, you need chlorine and either sodium or magnesium metal.
While in our world metallic titanium was only isolated in the early 1900s, as noted in Arkenstein XII's answer, the processes to isolate chlorine were invented in the late 1800s, and could've been managed much earlier if people knew how. Sodium and magnesium were isolated in 1807 and 1808, respectively. All of these processes, however, require electricity. Now, the Leyden jar was invented in 1746, which is 18th century, but that level of electrical expertise really wouldn't let you produce chlorine or sodium in any quantities useful for titanium production.
You could, however, take 19th century electrical knowledge and give it an earlier medieval aesthetic. After all, lodestone was known anciently, and medieval Europe certainly had the ability to draw copper wire. So, putting together a basic permanent-magnet generator is one of those things that absolutely could've been done in the background of otherwise-medieval technology if people just knew what they were doing.
So, the first bit of technology your dwarfs will need is just such an electrical generator: a few fixed lodestones arranged around an axle wound with wire, and spun with muscle power. They would also need to figure out commutators (sliding electrical connections that switch polarity every half-turn) to output DC. It needn't be very clean DC, but it does need to be DC! And if the dwarfs can figure out how to build a basic induction dynamo like that, it probably wouldn't be a big stretch to go on to designing a self-exciting dynamo, so they need only a very little lodestone to get it started.
From there, there are two methods of producing the necessary chlorine: mercury electrolysis, and diaphragm electrolysis. The first, of course requires mercury, which was available anciently and can be refined from ore relatively simply, and the second requires asbestos, which is a naturally occurring material that they could mine.
In the mercury electrolysis method, you float a solution of sodium chloride (i.e., salt) over a pool of mercury, with anodes suspended in the solution around which chlorine will accumulate. The chlorine can then be contained in glassware, which is certainly within the grasp of medieval technology. The mercury acts as a cathode, and will need to be bonded to the generator with iron, nickel, or graphite leads, as copper, silver, or gold wires will end up dissolving in it. The liberated sodium combines with the mercury to form a solid amalgam, which is them reacted with water to produce sodium hydroxide and recover the mercury for re-use.
In the diaphragm method, you basically just need the salt solution flowing through an asbestos sponge, with an anode to collect chlorine on one side and a cathode on the other. That is simpler, but not as awesome. You end up with dilute sodium hydroxide solution as a byproduct, which can be boiled down to concentrate the sodium hydroxide.
Of course, these are dwarfs we're talking about, so maybe they want to go for a more brute-force method that makes better use of their forges: by mixing sodium chloride with calcium chloride, they can get a low-melting temperature salt which can be liquified in a furnace at a mere 600 Celsius, easily attainable in a Medieval blast furnace. Electrolysis then produces chlorine and pure sodium directly. If they can't acquire enough calcium chloride catalyst, though, producing it from salt and limestone is a rather involved process.
Now that the dwarfs have chlorine, they need sodium or magnesium. If they used direct salt electrolysis in a blast furnace, you've already got the sodium! If not, they either need to refine magnesium or sodium, which they could do from the sodium hydroxide byproducts of chlorine isolation.
If they can get sodium bicarbonate, then they can just brute-force their way to sodium by heating that in a furnace with coke or charcoal. But, they need electrolysis anyway for other steps, and they're going to be producing a lot of sodium hydroxide as a chlorine byproduct anyway, so might as well go with straight-up sodium hydroxide electrolysis. For that, you just boil down the alkali solution to get solid NaOH, then melt it down and stick in an anode and cathode--the anode collects sodium, and oxygen and water vapor are released as byproducts. The tricky bit here is that the temperature needs to be controlled very precisely, at about 330 C. Too high, and the sodium will dissolve into the melt; too low, and the melt will solidify.
Although refining magnesium would give them yet another magical metal to work with, it is comparatively more complex, so I'd probably just stick with the sodium. As a consolation prize, sodium can be used in the refinement of aluminum as well. (Of course, aluminum can be isolated via electrolysis, which is the modern way of doing it, but that requires cryolite, which is not a common mineral; on the other hand, maybe your dwarfs just happen to be sitting on their world's largest deposit....)
Now that you have chlorine and sodium, and titanium oxide or ilmenite ore, you can go about making your titanium!
Step one is to heat the titanium ore with coke or charcoal to about 1000 Celsius, and then blow chlorine gas through it. This produces titanium chloride and carbon dioxide gasses. The titanium chloride can be condensed for liquid storage (it boils at 136 C), but care must be taken to keep it absolutely dry, as it will react with water to produce titanium dioxide (wasting your work!) and HCl gas, which is not nice to breathe!
The titanium chloride is then mixed with molten sodium in an anoxic atmosphere; modern processes use argon for this, but hydrogen ought to work as well, and producing hydrogen with medieval technology ain't hard; they can electrolyse it, or if you don't want to use electrolysis for just everything because it does kinda mess up the low-tech aesthetic, just pass superheated steam over charcoal. The TiCl4 + Na mixture should be preheated to about 500 Celcius, but after that the reaction is exothermic, so the reaction chamber needs to be able to withstand over a 1000 degrees (which, if you've gotten this far anyway, shouldn't be a problem). You then just let it sit for several days, and then cool down for several days, and then eventually you crack the reaction vessel and pull out pure titanium sponge and salt, which can be washed off with water (and recycled back into chlorine and sodium!)
Now, that just get it refined. Actually forging it once you've got a sponge of the pure metal is a tricksy skillfull process, but can be done in a regular blacksmith forge.
EDIT:
Apparently, it is also possible to produce titanium continuously in a stream process, in which titanium chloride vapor is bubbled through a stream of liquid sodium, and the solid titanium and salt are then filtered out and the sodium recirculated. I have no idea how feasible the equipment for that would be to set up with otherwise medieval technology, though.
If the dwarfs can acquire calcium chloride, however, it appears that there is a tricksy way to turn titanium dioxide directly into metal through electrolysis without having to deal with nasty elemental chlorine: the titanium ore is powdered and then pressed into pellets or rings which can be attached to a cathode, and then immersed into a bath of molten calcium chloride with a consumable carbon anode. This results in calcium reacting with the titanium ore to strip away the oxygen, then re-combining with chlorine in the melt while the oxygen react with the carbon anode, producing titanium metal and carbon dioxide.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "579"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f147112%2fwhat-technology-would-dwarves-need-to-forge-titanium%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The earliest process discovered that could produce metallic titanium was developed in 1910, and is called the Hunter Process. It involves a chemical reaction between titanium tetrachloride, and metallic sodium; thus, it requires a reasonably well developed understanding of chemistry.
Titanium does not occur in a native form, instead the only forms useful to the production of metal are Rutile and Ilmenite. Because of this, there is no simpler way to produce metallic titanium.
$endgroup$
$begingroup$
In addition, Titanium is apparently quite reactive with oxygen and is smelted in a sealed steel furnace with an argon atmosphere. So, just a touch past the 18th century! Titanium processing The long and short of it is they'd need the same technology pyramid that led to our being able to refine it.
$endgroup$
– elemtilas
1 hour ago
$begingroup$
@Arkenstein could you have the dwarves have a very developed understanding of chemistry without modern technology? I feel like brilliant alchemists could eventually figure something out.
$endgroup$
– Celestial Dragon Emperor
1 hour ago
$begingroup$
@CelestialDragonEmperor Alchemy and chemistry were actually just two different words for the same thing until the 1800s, or thereabout. Chemistry just changed the name so they wouldn't be associated with the impossible stuff (like transmutation) so it would be pretty fair to say dwarves have a strong chemical knowledge if you're giving them alchemical knowledge
$endgroup$
– Halfthawed
1 hour ago
$begingroup$
Well, metallic sodium was first produced in the late 1800s using a carbothermic reaction that requires sodium carbonate to be heated to 1100C. In order to produce titanium tetrachloride, you need to isolate chlorine, which was not recognised as an element in our history until the 1700s. Basically, titanium quite solidly belongs to the industrial era.
$endgroup$
– Arkenstein XII
1 hour ago
add a comment |
$begingroup$
The earliest process discovered that could produce metallic titanium was developed in 1910, and is called the Hunter Process. It involves a chemical reaction between titanium tetrachloride, and metallic sodium; thus, it requires a reasonably well developed understanding of chemistry.
Titanium does not occur in a native form, instead the only forms useful to the production of metal are Rutile and Ilmenite. Because of this, there is no simpler way to produce metallic titanium.
$endgroup$
$begingroup$
In addition, Titanium is apparently quite reactive with oxygen and is smelted in a sealed steel furnace with an argon atmosphere. So, just a touch past the 18th century! Titanium processing The long and short of it is they'd need the same technology pyramid that led to our being able to refine it.
$endgroup$
– elemtilas
1 hour ago
$begingroup$
@Arkenstein could you have the dwarves have a very developed understanding of chemistry without modern technology? I feel like brilliant alchemists could eventually figure something out.
$endgroup$
– Celestial Dragon Emperor
1 hour ago
$begingroup$
@CelestialDragonEmperor Alchemy and chemistry were actually just two different words for the same thing until the 1800s, or thereabout. Chemistry just changed the name so they wouldn't be associated with the impossible stuff (like transmutation) so it would be pretty fair to say dwarves have a strong chemical knowledge if you're giving them alchemical knowledge
$endgroup$
– Halfthawed
1 hour ago
$begingroup$
Well, metallic sodium was first produced in the late 1800s using a carbothermic reaction that requires sodium carbonate to be heated to 1100C. In order to produce titanium tetrachloride, you need to isolate chlorine, which was not recognised as an element in our history until the 1700s. Basically, titanium quite solidly belongs to the industrial era.
$endgroup$
– Arkenstein XII
1 hour ago
add a comment |
$begingroup$
The earliest process discovered that could produce metallic titanium was developed in 1910, and is called the Hunter Process. It involves a chemical reaction between titanium tetrachloride, and metallic sodium; thus, it requires a reasonably well developed understanding of chemistry.
Titanium does not occur in a native form, instead the only forms useful to the production of metal are Rutile and Ilmenite. Because of this, there is no simpler way to produce metallic titanium.
$endgroup$
The earliest process discovered that could produce metallic titanium was developed in 1910, and is called the Hunter Process. It involves a chemical reaction between titanium tetrachloride, and metallic sodium; thus, it requires a reasonably well developed understanding of chemistry.
Titanium does not occur in a native form, instead the only forms useful to the production of metal are Rutile and Ilmenite. Because of this, there is no simpler way to produce metallic titanium.
answered 1 hour ago
Arkenstein XIIArkenstein XII
3,219833
3,219833
$begingroup$
In addition, Titanium is apparently quite reactive with oxygen and is smelted in a sealed steel furnace with an argon atmosphere. So, just a touch past the 18th century! Titanium processing The long and short of it is they'd need the same technology pyramid that led to our being able to refine it.
$endgroup$
– elemtilas
1 hour ago
$begingroup$
@Arkenstein could you have the dwarves have a very developed understanding of chemistry without modern technology? I feel like brilliant alchemists could eventually figure something out.
$endgroup$
– Celestial Dragon Emperor
1 hour ago
$begingroup$
@CelestialDragonEmperor Alchemy and chemistry were actually just two different words for the same thing until the 1800s, or thereabout. Chemistry just changed the name so they wouldn't be associated with the impossible stuff (like transmutation) so it would be pretty fair to say dwarves have a strong chemical knowledge if you're giving them alchemical knowledge
$endgroup$
– Halfthawed
1 hour ago
$begingroup$
Well, metallic sodium was first produced in the late 1800s using a carbothermic reaction that requires sodium carbonate to be heated to 1100C. In order to produce titanium tetrachloride, you need to isolate chlorine, which was not recognised as an element in our history until the 1700s. Basically, titanium quite solidly belongs to the industrial era.
$endgroup$
– Arkenstein XII
1 hour ago
add a comment |
$begingroup$
In addition, Titanium is apparently quite reactive with oxygen and is smelted in a sealed steel furnace with an argon atmosphere. So, just a touch past the 18th century! Titanium processing The long and short of it is they'd need the same technology pyramid that led to our being able to refine it.
$endgroup$
– elemtilas
1 hour ago
$begingroup$
@Arkenstein could you have the dwarves have a very developed understanding of chemistry without modern technology? I feel like brilliant alchemists could eventually figure something out.
$endgroup$
– Celestial Dragon Emperor
1 hour ago
$begingroup$
@CelestialDragonEmperor Alchemy and chemistry were actually just two different words for the same thing until the 1800s, or thereabout. Chemistry just changed the name so they wouldn't be associated with the impossible stuff (like transmutation) so it would be pretty fair to say dwarves have a strong chemical knowledge if you're giving them alchemical knowledge
$endgroup$
– Halfthawed
1 hour ago
$begingroup$
Well, metallic sodium was first produced in the late 1800s using a carbothermic reaction that requires sodium carbonate to be heated to 1100C. In order to produce titanium tetrachloride, you need to isolate chlorine, which was not recognised as an element in our history until the 1700s. Basically, titanium quite solidly belongs to the industrial era.
$endgroup$
– Arkenstein XII
1 hour ago
$begingroup$
In addition, Titanium is apparently quite reactive with oxygen and is smelted in a sealed steel furnace with an argon atmosphere. So, just a touch past the 18th century! Titanium processing The long and short of it is they'd need the same technology pyramid that led to our being able to refine it.
$endgroup$
– elemtilas
1 hour ago
$begingroup$
In addition, Titanium is apparently quite reactive with oxygen and is smelted in a sealed steel furnace with an argon atmosphere. So, just a touch past the 18th century! Titanium processing The long and short of it is they'd need the same technology pyramid that led to our being able to refine it.
$endgroup$
– elemtilas
1 hour ago
$begingroup$
@Arkenstein could you have the dwarves have a very developed understanding of chemistry without modern technology? I feel like brilliant alchemists could eventually figure something out.
$endgroup$
– Celestial Dragon Emperor
1 hour ago
$begingroup$
@Arkenstein could you have the dwarves have a very developed understanding of chemistry without modern technology? I feel like brilliant alchemists could eventually figure something out.
$endgroup$
– Celestial Dragon Emperor
1 hour ago
$begingroup$
@CelestialDragonEmperor Alchemy and chemistry were actually just two different words for the same thing until the 1800s, or thereabout. Chemistry just changed the name so they wouldn't be associated with the impossible stuff (like transmutation) so it would be pretty fair to say dwarves have a strong chemical knowledge if you're giving them alchemical knowledge
$endgroup$
– Halfthawed
1 hour ago
$begingroup$
@CelestialDragonEmperor Alchemy and chemistry were actually just two different words for the same thing until the 1800s, or thereabout. Chemistry just changed the name so they wouldn't be associated with the impossible stuff (like transmutation) so it would be pretty fair to say dwarves have a strong chemical knowledge if you're giving them alchemical knowledge
$endgroup$
– Halfthawed
1 hour ago
$begingroup$
Well, metallic sodium was first produced in the late 1800s using a carbothermic reaction that requires sodium carbonate to be heated to 1100C. In order to produce titanium tetrachloride, you need to isolate chlorine, which was not recognised as an element in our history until the 1700s. Basically, titanium quite solidly belongs to the industrial era.
$endgroup$
– Arkenstein XII
1 hour ago
$begingroup$
Well, metallic sodium was first produced in the late 1800s using a carbothermic reaction that requires sodium carbonate to be heated to 1100C. In order to produce titanium tetrachloride, you need to isolate chlorine, which was not recognised as an element in our history until the 1700s. Basically, titanium quite solidly belongs to the industrial era.
$endgroup$
– Arkenstein XII
1 hour ago
add a comment |
$begingroup$
For refining, deadly chlorine must be mastered, then either magnesium or sodium. An oxygen free furnace at 1200C is necessary. That is going to be difficult or impossible to achieve without either large amounts of electricity (vacuum chambers, electric heat), or pure inert gas(argon shielding atmosphere isolated from flame furnace). The oxygen free environment is also required after refining any time it is to be forged, welded or annealed.
$endgroup$
$begingroup$
Of course, if there were a magical means to eliminate oxygen from the furnace....
$endgroup$
– Arkenstein XII
43 mins ago
add a comment |
$begingroup$
For refining, deadly chlorine must be mastered, then either magnesium or sodium. An oxygen free furnace at 1200C is necessary. That is going to be difficult or impossible to achieve without either large amounts of electricity (vacuum chambers, electric heat), or pure inert gas(argon shielding atmosphere isolated from flame furnace). The oxygen free environment is also required after refining any time it is to be forged, welded or annealed.
$endgroup$
$begingroup$
Of course, if there were a magical means to eliminate oxygen from the furnace....
$endgroup$
– Arkenstein XII
43 mins ago
add a comment |
$begingroup$
For refining, deadly chlorine must be mastered, then either magnesium or sodium. An oxygen free furnace at 1200C is necessary. That is going to be difficult or impossible to achieve without either large amounts of electricity (vacuum chambers, electric heat), or pure inert gas(argon shielding atmosphere isolated from flame furnace). The oxygen free environment is also required after refining any time it is to be forged, welded or annealed.
$endgroup$
For refining, deadly chlorine must be mastered, then either magnesium or sodium. An oxygen free furnace at 1200C is necessary. That is going to be difficult or impossible to achieve without either large amounts of electricity (vacuum chambers, electric heat), or pure inert gas(argon shielding atmosphere isolated from flame furnace). The oxygen free environment is also required after refining any time it is to be forged, welded or annealed.
answered 1 hour ago
slomobileslomobile
1113
1113
$begingroup$
Of course, if there were a magical means to eliminate oxygen from the furnace....
$endgroup$
– Arkenstein XII
43 mins ago
add a comment |
$begingroup$
Of course, if there were a magical means to eliminate oxygen from the furnace....
$endgroup$
– Arkenstein XII
43 mins ago
$begingroup$
Of course, if there were a magical means to eliminate oxygen from the furnace....
$endgroup$
– Arkenstein XII
43 mins ago
$begingroup$
Of course, if there were a magical means to eliminate oxygen from the furnace....
$endgroup$
– Arkenstein XII
43 mins ago
add a comment |
$begingroup$
They would need electrolysis. Not for refining the titanium directly, but for preparing the other chemical agents needed for titanium refinement. Specifically, you need chlorine and either sodium or magnesium metal.
While in our world metallic titanium was only isolated in the early 1900s, as noted in Arkenstein XII's answer, the processes to isolate chlorine were invented in the late 1800s, and could've been managed much earlier if people knew how. Sodium and magnesium were isolated in 1807 and 1808, respectively. All of these processes, however, require electricity. Now, the Leyden jar was invented in 1746, which is 18th century, but that level of electrical expertise really wouldn't let you produce chlorine or sodium in any quantities useful for titanium production.
You could, however, take 19th century electrical knowledge and give it an earlier medieval aesthetic. After all, lodestone was known anciently, and medieval Europe certainly had the ability to draw copper wire. So, putting together a basic permanent-magnet generator is one of those things that absolutely could've been done in the background of otherwise-medieval technology if people just knew what they were doing.
So, the first bit of technology your dwarfs will need is just such an electrical generator: a few fixed lodestones arranged around an axle wound with wire, and spun with muscle power. They would also need to figure out commutators (sliding electrical connections that switch polarity every half-turn) to output DC. It needn't be very clean DC, but it does need to be DC! And if the dwarfs can figure out how to build a basic induction dynamo like that, it probably wouldn't be a big stretch to go on to designing a self-exciting dynamo, so they need only a very little lodestone to get it started.
From there, there are two methods of producing the necessary chlorine: mercury electrolysis, and diaphragm electrolysis. The first, of course requires mercury, which was available anciently and can be refined from ore relatively simply, and the second requires asbestos, which is a naturally occurring material that they could mine.
In the mercury electrolysis method, you float a solution of sodium chloride (i.e., salt) over a pool of mercury, with anodes suspended in the solution around which chlorine will accumulate. The chlorine can then be contained in glassware, which is certainly within the grasp of medieval technology. The mercury acts as a cathode, and will need to be bonded to the generator with iron, nickel, or graphite leads, as copper, silver, or gold wires will end up dissolving in it. The liberated sodium combines with the mercury to form a solid amalgam, which is them reacted with water to produce sodium hydroxide and recover the mercury for re-use.
In the diaphragm method, you basically just need the salt solution flowing through an asbestos sponge, with an anode to collect chlorine on one side and a cathode on the other. That is simpler, but not as awesome. You end up with dilute sodium hydroxide solution as a byproduct, which can be boiled down to concentrate the sodium hydroxide.
Of course, these are dwarfs we're talking about, so maybe they want to go for a more brute-force method that makes better use of their forges: by mixing sodium chloride with calcium chloride, they can get a low-melting temperature salt which can be liquified in a furnace at a mere 600 Celsius, easily attainable in a Medieval blast furnace. Electrolysis then produces chlorine and pure sodium directly. If they can't acquire enough calcium chloride catalyst, though, producing it from salt and limestone is a rather involved process.
Now that the dwarfs have chlorine, they need sodium or magnesium. If they used direct salt electrolysis in a blast furnace, you've already got the sodium! If not, they either need to refine magnesium or sodium, which they could do from the sodium hydroxide byproducts of chlorine isolation.
If they can get sodium bicarbonate, then they can just brute-force their way to sodium by heating that in a furnace with coke or charcoal. But, they need electrolysis anyway for other steps, and they're going to be producing a lot of sodium hydroxide as a chlorine byproduct anyway, so might as well go with straight-up sodium hydroxide electrolysis. For that, you just boil down the alkali solution to get solid NaOH, then melt it down and stick in an anode and cathode--the anode collects sodium, and oxygen and water vapor are released as byproducts. The tricky bit here is that the temperature needs to be controlled very precisely, at about 330 C. Too high, and the sodium will dissolve into the melt; too low, and the melt will solidify.
Although refining magnesium would give them yet another magical metal to work with, it is comparatively more complex, so I'd probably just stick with the sodium. As a consolation prize, sodium can be used in the refinement of aluminum as well. (Of course, aluminum can be isolated via electrolysis, which is the modern way of doing it, but that requires cryolite, which is not a common mineral; on the other hand, maybe your dwarfs just happen to be sitting on their world's largest deposit....)
Now that you have chlorine and sodium, and titanium oxide or ilmenite ore, you can go about making your titanium!
Step one is to heat the titanium ore with coke or charcoal to about 1000 Celsius, and then blow chlorine gas through it. This produces titanium chloride and carbon dioxide gasses. The titanium chloride can be condensed for liquid storage (it boils at 136 C), but care must be taken to keep it absolutely dry, as it will react with water to produce titanium dioxide (wasting your work!) and HCl gas, which is not nice to breathe!
The titanium chloride is then mixed with molten sodium in an anoxic atmosphere; modern processes use argon for this, but hydrogen ought to work as well, and producing hydrogen with medieval technology ain't hard; they can electrolyse it, or if you don't want to use electrolysis for just everything because it does kinda mess up the low-tech aesthetic, just pass superheated steam over charcoal. The TiCl4 + Na mixture should be preheated to about 500 Celcius, but after that the reaction is exothermic, so the reaction chamber needs to be able to withstand over a 1000 degrees (which, if you've gotten this far anyway, shouldn't be a problem). You then just let it sit for several days, and then cool down for several days, and then eventually you crack the reaction vessel and pull out pure titanium sponge and salt, which can be washed off with water (and recycled back into chlorine and sodium!)
Now, that just get it refined. Actually forging it once you've got a sponge of the pure metal is a tricksy skillfull process, but can be done in a regular blacksmith forge.
EDIT:
Apparently, it is also possible to produce titanium continuously in a stream process, in which titanium chloride vapor is bubbled through a stream of liquid sodium, and the solid titanium and salt are then filtered out and the sodium recirculated. I have no idea how feasible the equipment for that would be to set up with otherwise medieval technology, though.
If the dwarfs can acquire calcium chloride, however, it appears that there is a tricksy way to turn titanium dioxide directly into metal through electrolysis without having to deal with nasty elemental chlorine: the titanium ore is powdered and then pressed into pellets or rings which can be attached to a cathode, and then immersed into a bath of molten calcium chloride with a consumable carbon anode. This results in calcium reacting with the titanium ore to strip away the oxygen, then re-combining with chlorine in the melt while the oxygen react with the carbon anode, producing titanium metal and carbon dioxide.
$endgroup$
add a comment |
$begingroup$
They would need electrolysis. Not for refining the titanium directly, but for preparing the other chemical agents needed for titanium refinement. Specifically, you need chlorine and either sodium or magnesium metal.
While in our world metallic titanium was only isolated in the early 1900s, as noted in Arkenstein XII's answer, the processes to isolate chlorine were invented in the late 1800s, and could've been managed much earlier if people knew how. Sodium and magnesium were isolated in 1807 and 1808, respectively. All of these processes, however, require electricity. Now, the Leyden jar was invented in 1746, which is 18th century, but that level of electrical expertise really wouldn't let you produce chlorine or sodium in any quantities useful for titanium production.
You could, however, take 19th century electrical knowledge and give it an earlier medieval aesthetic. After all, lodestone was known anciently, and medieval Europe certainly had the ability to draw copper wire. So, putting together a basic permanent-magnet generator is one of those things that absolutely could've been done in the background of otherwise-medieval technology if people just knew what they were doing.
So, the first bit of technology your dwarfs will need is just such an electrical generator: a few fixed lodestones arranged around an axle wound with wire, and spun with muscle power. They would also need to figure out commutators (sliding electrical connections that switch polarity every half-turn) to output DC. It needn't be very clean DC, but it does need to be DC! And if the dwarfs can figure out how to build a basic induction dynamo like that, it probably wouldn't be a big stretch to go on to designing a self-exciting dynamo, so they need only a very little lodestone to get it started.
From there, there are two methods of producing the necessary chlorine: mercury electrolysis, and diaphragm electrolysis. The first, of course requires mercury, which was available anciently and can be refined from ore relatively simply, and the second requires asbestos, which is a naturally occurring material that they could mine.
In the mercury electrolysis method, you float a solution of sodium chloride (i.e., salt) over a pool of mercury, with anodes suspended in the solution around which chlorine will accumulate. The chlorine can then be contained in glassware, which is certainly within the grasp of medieval technology. The mercury acts as a cathode, and will need to be bonded to the generator with iron, nickel, or graphite leads, as copper, silver, or gold wires will end up dissolving in it. The liberated sodium combines with the mercury to form a solid amalgam, which is them reacted with water to produce sodium hydroxide and recover the mercury for re-use.
In the diaphragm method, you basically just need the salt solution flowing through an asbestos sponge, with an anode to collect chlorine on one side and a cathode on the other. That is simpler, but not as awesome. You end up with dilute sodium hydroxide solution as a byproduct, which can be boiled down to concentrate the sodium hydroxide.
Of course, these are dwarfs we're talking about, so maybe they want to go for a more brute-force method that makes better use of their forges: by mixing sodium chloride with calcium chloride, they can get a low-melting temperature salt which can be liquified in a furnace at a mere 600 Celsius, easily attainable in a Medieval blast furnace. Electrolysis then produces chlorine and pure sodium directly. If they can't acquire enough calcium chloride catalyst, though, producing it from salt and limestone is a rather involved process.
Now that the dwarfs have chlorine, they need sodium or magnesium. If they used direct salt electrolysis in a blast furnace, you've already got the sodium! If not, they either need to refine magnesium or sodium, which they could do from the sodium hydroxide byproducts of chlorine isolation.
If they can get sodium bicarbonate, then they can just brute-force their way to sodium by heating that in a furnace with coke or charcoal. But, they need electrolysis anyway for other steps, and they're going to be producing a lot of sodium hydroxide as a chlorine byproduct anyway, so might as well go with straight-up sodium hydroxide electrolysis. For that, you just boil down the alkali solution to get solid NaOH, then melt it down and stick in an anode and cathode--the anode collects sodium, and oxygen and water vapor are released as byproducts. The tricky bit here is that the temperature needs to be controlled very precisely, at about 330 C. Too high, and the sodium will dissolve into the melt; too low, and the melt will solidify.
Although refining magnesium would give them yet another magical metal to work with, it is comparatively more complex, so I'd probably just stick with the sodium. As a consolation prize, sodium can be used in the refinement of aluminum as well. (Of course, aluminum can be isolated via electrolysis, which is the modern way of doing it, but that requires cryolite, which is not a common mineral; on the other hand, maybe your dwarfs just happen to be sitting on their world's largest deposit....)
Now that you have chlorine and sodium, and titanium oxide or ilmenite ore, you can go about making your titanium!
Step one is to heat the titanium ore with coke or charcoal to about 1000 Celsius, and then blow chlorine gas through it. This produces titanium chloride and carbon dioxide gasses. The titanium chloride can be condensed for liquid storage (it boils at 136 C), but care must be taken to keep it absolutely dry, as it will react with water to produce titanium dioxide (wasting your work!) and HCl gas, which is not nice to breathe!
The titanium chloride is then mixed with molten sodium in an anoxic atmosphere; modern processes use argon for this, but hydrogen ought to work as well, and producing hydrogen with medieval technology ain't hard; they can electrolyse it, or if you don't want to use electrolysis for just everything because it does kinda mess up the low-tech aesthetic, just pass superheated steam over charcoal. The TiCl4 + Na mixture should be preheated to about 500 Celcius, but after that the reaction is exothermic, so the reaction chamber needs to be able to withstand over a 1000 degrees (which, if you've gotten this far anyway, shouldn't be a problem). You then just let it sit for several days, and then cool down for several days, and then eventually you crack the reaction vessel and pull out pure titanium sponge and salt, which can be washed off with water (and recycled back into chlorine and sodium!)
Now, that just get it refined. Actually forging it once you've got a sponge of the pure metal is a tricksy skillfull process, but can be done in a regular blacksmith forge.
EDIT:
Apparently, it is also possible to produce titanium continuously in a stream process, in which titanium chloride vapor is bubbled through a stream of liquid sodium, and the solid titanium and salt are then filtered out and the sodium recirculated. I have no idea how feasible the equipment for that would be to set up with otherwise medieval technology, though.
If the dwarfs can acquire calcium chloride, however, it appears that there is a tricksy way to turn titanium dioxide directly into metal through electrolysis without having to deal with nasty elemental chlorine: the titanium ore is powdered and then pressed into pellets or rings which can be attached to a cathode, and then immersed into a bath of molten calcium chloride with a consumable carbon anode. This results in calcium reacting with the titanium ore to strip away the oxygen, then re-combining with chlorine in the melt while the oxygen react with the carbon anode, producing titanium metal and carbon dioxide.
$endgroup$
add a comment |
$begingroup$
They would need electrolysis. Not for refining the titanium directly, but for preparing the other chemical agents needed for titanium refinement. Specifically, you need chlorine and either sodium or magnesium metal.
While in our world metallic titanium was only isolated in the early 1900s, as noted in Arkenstein XII's answer, the processes to isolate chlorine were invented in the late 1800s, and could've been managed much earlier if people knew how. Sodium and magnesium were isolated in 1807 and 1808, respectively. All of these processes, however, require electricity. Now, the Leyden jar was invented in 1746, which is 18th century, but that level of electrical expertise really wouldn't let you produce chlorine or sodium in any quantities useful for titanium production.
You could, however, take 19th century electrical knowledge and give it an earlier medieval aesthetic. After all, lodestone was known anciently, and medieval Europe certainly had the ability to draw copper wire. So, putting together a basic permanent-magnet generator is one of those things that absolutely could've been done in the background of otherwise-medieval technology if people just knew what they were doing.
So, the first bit of technology your dwarfs will need is just such an electrical generator: a few fixed lodestones arranged around an axle wound with wire, and spun with muscle power. They would also need to figure out commutators (sliding electrical connections that switch polarity every half-turn) to output DC. It needn't be very clean DC, but it does need to be DC! And if the dwarfs can figure out how to build a basic induction dynamo like that, it probably wouldn't be a big stretch to go on to designing a self-exciting dynamo, so they need only a very little lodestone to get it started.
From there, there are two methods of producing the necessary chlorine: mercury electrolysis, and diaphragm electrolysis. The first, of course requires mercury, which was available anciently and can be refined from ore relatively simply, and the second requires asbestos, which is a naturally occurring material that they could mine.
In the mercury electrolysis method, you float a solution of sodium chloride (i.e., salt) over a pool of mercury, with anodes suspended in the solution around which chlorine will accumulate. The chlorine can then be contained in glassware, which is certainly within the grasp of medieval technology. The mercury acts as a cathode, and will need to be bonded to the generator with iron, nickel, or graphite leads, as copper, silver, or gold wires will end up dissolving in it. The liberated sodium combines with the mercury to form a solid amalgam, which is them reacted with water to produce sodium hydroxide and recover the mercury for re-use.
In the diaphragm method, you basically just need the salt solution flowing through an asbestos sponge, with an anode to collect chlorine on one side and a cathode on the other. That is simpler, but not as awesome. You end up with dilute sodium hydroxide solution as a byproduct, which can be boiled down to concentrate the sodium hydroxide.
Of course, these are dwarfs we're talking about, so maybe they want to go for a more brute-force method that makes better use of their forges: by mixing sodium chloride with calcium chloride, they can get a low-melting temperature salt which can be liquified in a furnace at a mere 600 Celsius, easily attainable in a Medieval blast furnace. Electrolysis then produces chlorine and pure sodium directly. If they can't acquire enough calcium chloride catalyst, though, producing it from salt and limestone is a rather involved process.
Now that the dwarfs have chlorine, they need sodium or magnesium. If they used direct salt electrolysis in a blast furnace, you've already got the sodium! If not, they either need to refine magnesium or sodium, which they could do from the sodium hydroxide byproducts of chlorine isolation.
If they can get sodium bicarbonate, then they can just brute-force their way to sodium by heating that in a furnace with coke or charcoal. But, they need electrolysis anyway for other steps, and they're going to be producing a lot of sodium hydroxide as a chlorine byproduct anyway, so might as well go with straight-up sodium hydroxide electrolysis. For that, you just boil down the alkali solution to get solid NaOH, then melt it down and stick in an anode and cathode--the anode collects sodium, and oxygen and water vapor are released as byproducts. The tricky bit here is that the temperature needs to be controlled very precisely, at about 330 C. Too high, and the sodium will dissolve into the melt; too low, and the melt will solidify.
Although refining magnesium would give them yet another magical metal to work with, it is comparatively more complex, so I'd probably just stick with the sodium. As a consolation prize, sodium can be used in the refinement of aluminum as well. (Of course, aluminum can be isolated via electrolysis, which is the modern way of doing it, but that requires cryolite, which is not a common mineral; on the other hand, maybe your dwarfs just happen to be sitting on their world's largest deposit....)
Now that you have chlorine and sodium, and titanium oxide or ilmenite ore, you can go about making your titanium!
Step one is to heat the titanium ore with coke or charcoal to about 1000 Celsius, and then blow chlorine gas through it. This produces titanium chloride and carbon dioxide gasses. The titanium chloride can be condensed for liquid storage (it boils at 136 C), but care must be taken to keep it absolutely dry, as it will react with water to produce titanium dioxide (wasting your work!) and HCl gas, which is not nice to breathe!
The titanium chloride is then mixed with molten sodium in an anoxic atmosphere; modern processes use argon for this, but hydrogen ought to work as well, and producing hydrogen with medieval technology ain't hard; they can electrolyse it, or if you don't want to use electrolysis for just everything because it does kinda mess up the low-tech aesthetic, just pass superheated steam over charcoal. The TiCl4 + Na mixture should be preheated to about 500 Celcius, but after that the reaction is exothermic, so the reaction chamber needs to be able to withstand over a 1000 degrees (which, if you've gotten this far anyway, shouldn't be a problem). You then just let it sit for several days, and then cool down for several days, and then eventually you crack the reaction vessel and pull out pure titanium sponge and salt, which can be washed off with water (and recycled back into chlorine and sodium!)
Now, that just get it refined. Actually forging it once you've got a sponge of the pure metal is a tricksy skillfull process, but can be done in a regular blacksmith forge.
EDIT:
Apparently, it is also possible to produce titanium continuously in a stream process, in which titanium chloride vapor is bubbled through a stream of liquid sodium, and the solid titanium and salt are then filtered out and the sodium recirculated. I have no idea how feasible the equipment for that would be to set up with otherwise medieval technology, though.
If the dwarfs can acquire calcium chloride, however, it appears that there is a tricksy way to turn titanium dioxide directly into metal through electrolysis without having to deal with nasty elemental chlorine: the titanium ore is powdered and then pressed into pellets or rings which can be attached to a cathode, and then immersed into a bath of molten calcium chloride with a consumable carbon anode. This results in calcium reacting with the titanium ore to strip away the oxygen, then re-combining with chlorine in the melt while the oxygen react with the carbon anode, producing titanium metal and carbon dioxide.
$endgroup$
They would need electrolysis. Not for refining the titanium directly, but for preparing the other chemical agents needed for titanium refinement. Specifically, you need chlorine and either sodium or magnesium metal.
While in our world metallic titanium was only isolated in the early 1900s, as noted in Arkenstein XII's answer, the processes to isolate chlorine were invented in the late 1800s, and could've been managed much earlier if people knew how. Sodium and magnesium were isolated in 1807 and 1808, respectively. All of these processes, however, require electricity. Now, the Leyden jar was invented in 1746, which is 18th century, but that level of electrical expertise really wouldn't let you produce chlorine or sodium in any quantities useful for titanium production.
You could, however, take 19th century electrical knowledge and give it an earlier medieval aesthetic. After all, lodestone was known anciently, and medieval Europe certainly had the ability to draw copper wire. So, putting together a basic permanent-magnet generator is one of those things that absolutely could've been done in the background of otherwise-medieval technology if people just knew what they were doing.
So, the first bit of technology your dwarfs will need is just such an electrical generator: a few fixed lodestones arranged around an axle wound with wire, and spun with muscle power. They would also need to figure out commutators (sliding electrical connections that switch polarity every half-turn) to output DC. It needn't be very clean DC, but it does need to be DC! And if the dwarfs can figure out how to build a basic induction dynamo like that, it probably wouldn't be a big stretch to go on to designing a self-exciting dynamo, so they need only a very little lodestone to get it started.
From there, there are two methods of producing the necessary chlorine: mercury electrolysis, and diaphragm electrolysis. The first, of course requires mercury, which was available anciently and can be refined from ore relatively simply, and the second requires asbestos, which is a naturally occurring material that they could mine.
In the mercury electrolysis method, you float a solution of sodium chloride (i.e., salt) over a pool of mercury, with anodes suspended in the solution around which chlorine will accumulate. The chlorine can then be contained in glassware, which is certainly within the grasp of medieval technology. The mercury acts as a cathode, and will need to be bonded to the generator with iron, nickel, or graphite leads, as copper, silver, or gold wires will end up dissolving in it. The liberated sodium combines with the mercury to form a solid amalgam, which is them reacted with water to produce sodium hydroxide and recover the mercury for re-use.
In the diaphragm method, you basically just need the salt solution flowing through an asbestos sponge, with an anode to collect chlorine on one side and a cathode on the other. That is simpler, but not as awesome. You end up with dilute sodium hydroxide solution as a byproduct, which can be boiled down to concentrate the sodium hydroxide.
Of course, these are dwarfs we're talking about, so maybe they want to go for a more brute-force method that makes better use of their forges: by mixing sodium chloride with calcium chloride, they can get a low-melting temperature salt which can be liquified in a furnace at a mere 600 Celsius, easily attainable in a Medieval blast furnace. Electrolysis then produces chlorine and pure sodium directly. If they can't acquire enough calcium chloride catalyst, though, producing it from salt and limestone is a rather involved process.
Now that the dwarfs have chlorine, they need sodium or magnesium. If they used direct salt electrolysis in a blast furnace, you've already got the sodium! If not, they either need to refine magnesium or sodium, which they could do from the sodium hydroxide byproducts of chlorine isolation.
If they can get sodium bicarbonate, then they can just brute-force their way to sodium by heating that in a furnace with coke or charcoal. But, they need electrolysis anyway for other steps, and they're going to be producing a lot of sodium hydroxide as a chlorine byproduct anyway, so might as well go with straight-up sodium hydroxide electrolysis. For that, you just boil down the alkali solution to get solid NaOH, then melt it down and stick in an anode and cathode--the anode collects sodium, and oxygen and water vapor are released as byproducts. The tricky bit here is that the temperature needs to be controlled very precisely, at about 330 C. Too high, and the sodium will dissolve into the melt; too low, and the melt will solidify.
Although refining magnesium would give them yet another magical metal to work with, it is comparatively more complex, so I'd probably just stick with the sodium. As a consolation prize, sodium can be used in the refinement of aluminum as well. (Of course, aluminum can be isolated via electrolysis, which is the modern way of doing it, but that requires cryolite, which is not a common mineral; on the other hand, maybe your dwarfs just happen to be sitting on their world's largest deposit....)
Now that you have chlorine and sodium, and titanium oxide or ilmenite ore, you can go about making your titanium!
Step one is to heat the titanium ore with coke or charcoal to about 1000 Celsius, and then blow chlorine gas through it. This produces titanium chloride and carbon dioxide gasses. The titanium chloride can be condensed for liquid storage (it boils at 136 C), but care must be taken to keep it absolutely dry, as it will react with water to produce titanium dioxide (wasting your work!) and HCl gas, which is not nice to breathe!
The titanium chloride is then mixed with molten sodium in an anoxic atmosphere; modern processes use argon for this, but hydrogen ought to work as well, and producing hydrogen with medieval technology ain't hard; they can electrolyse it, or if you don't want to use electrolysis for just everything because it does kinda mess up the low-tech aesthetic, just pass superheated steam over charcoal. The TiCl4 + Na mixture should be preheated to about 500 Celcius, but after that the reaction is exothermic, so the reaction chamber needs to be able to withstand over a 1000 degrees (which, if you've gotten this far anyway, shouldn't be a problem). You then just let it sit for several days, and then cool down for several days, and then eventually you crack the reaction vessel and pull out pure titanium sponge and salt, which can be washed off with water (and recycled back into chlorine and sodium!)
Now, that just get it refined. Actually forging it once you've got a sponge of the pure metal is a tricksy skillfull process, but can be done in a regular blacksmith forge.
EDIT:
Apparently, it is also possible to produce titanium continuously in a stream process, in which titanium chloride vapor is bubbled through a stream of liquid sodium, and the solid titanium and salt are then filtered out and the sodium recirculated. I have no idea how feasible the equipment for that would be to set up with otherwise medieval technology, though.
If the dwarfs can acquire calcium chloride, however, it appears that there is a tricksy way to turn titanium dioxide directly into metal through electrolysis without having to deal with nasty elemental chlorine: the titanium ore is powdered and then pressed into pellets or rings which can be attached to a cathode, and then immersed into a bath of molten calcium chloride with a consumable carbon anode. This results in calcium reacting with the titanium ore to strip away the oxygen, then re-combining with chlorine in the melt while the oxygen react with the carbon anode, producing titanium metal and carbon dioxide.
edited 14 mins ago
answered 28 mins ago
Logan R. KearsleyLogan R. Kearsley
11.9k13258
11.9k13258
add a comment |
add a comment |
Thanks for contributing an answer to Worldbuilding Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fworldbuilding.stackexchange.com%2fquestions%2f147112%2fwhat-technology-would-dwarves-need-to-forge-titanium%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown