Computing a trigonometric integralHelp computing integral of quarter contourA trigonometric integral...
3D Crossword, Cryptic, Statue View & Maze
If the world have massive single giant world tree can it stop earthquake?
What reason would an alien civilization have for building a Dyson Sphere (or Swarm) if cheap Nuclear fusion is available?
Apply brace expansion in "reverse order"
What does "play with your toy’s toys" mean?
How would a drone work in centrifugal force generated "gravity"?
Is my Rep in Stack-Exchange Form?
Is it damaging to turn off a small fridge for two days every week?
Should developer taking test phones home or put in office?
Is adding a new player (or players) a DM decision, or a group decision?
Underbar nabla symbol doesn't work
Hand soldering SMD 1206 components
Fill NAs in R with zero if the next valid data point is more than 2 intervals away
Vanishing of certain coefficients coming from Coxeter groups
How to split an equation in two lines?
Links to webpages in books
Can White Castle?
Is there a maximum distance from a planet that a moon can orbit?
C-152 carb heat on before landing in hot weather?
Can Ogre clerics use Purify Food and Drink on humanoid characters?
Has there been any indication at all that further negotiation between the UK and EU is possible?
Why aren't cotton tents more popular?
STM Microcontroller burns every time
Why doesn't a marching band have strings?
Computing a trigonometric integral
Help computing integral of quarter contourA trigonometric integral identityComputing an integral arising in potential theoryDefinite integral which does not evaluateEvaluate $int_{0}^{pi}ln(cos(x)+1)cos(nx),dx$solving exponential of trigonometric function inside an integral.How to convert this integral to an elliptic integral?Why does this integral not depend on the parameter?Difficult trigonometric integral. [Solved]Solving the Integral without Cauchy Integral formula.
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ margin-bottom:0;
}
$begingroup$
I am studying the integral
$$I=int_{-pi/2}^{pi/2}
frac{28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)}{2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)}dtheta,$$
where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.
On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.
Any ideas of how to approach this problem?
Just in case, I found this alternative representation of the integral
$$I=int_{-pi/2}^{pi/2}
frac{8[5sin(2theta)+28cos(2theta)]}{cos(4theta)+15+8(m-2)sin^4(theta)}dtheta.$$
Any help would be appreciated.
integration definite-integrals
$endgroup$
add a comment |
$begingroup$
I am studying the integral
$$I=int_{-pi/2}^{pi/2}
frac{28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)}{2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)}dtheta,$$
where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.
On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.
Any ideas of how to approach this problem?
Just in case, I found this alternative representation of the integral
$$I=int_{-pi/2}^{pi/2}
frac{8[5sin(2theta)+28cos(2theta)]}{cos(4theta)+15+8(m-2)sin^4(theta)}dtheta.$$
Any help would be appreciated.
integration definite-integrals
$endgroup$
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
10 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
10 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
10 hours ago
2
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac{1}{alpha}right)sqrt{frac{2}{4alpha+3}}. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatorname{sign}(I(alpha)) = operatorname{sign}(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_{-infty}^{infty} frac{28(1-t^2)}{2+3t^2+2alpha^2 t^4}, mathrm{d}t, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
7 hours ago
add a comment |
$begingroup$
I am studying the integral
$$I=int_{-pi/2}^{pi/2}
frac{28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)}{2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)}dtheta,$$
where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.
On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.
Any ideas of how to approach this problem?
Just in case, I found this alternative representation of the integral
$$I=int_{-pi/2}^{pi/2}
frac{8[5sin(2theta)+28cos(2theta)]}{cos(4theta)+15+8(m-2)sin^4(theta)}dtheta.$$
Any help would be appreciated.
integration definite-integrals
$endgroup$
I am studying the integral
$$I=int_{-pi/2}^{pi/2}
frac{28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)}{2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)}dtheta,$$
where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.
On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.
Any ideas of how to approach this problem?
Just in case, I found this alternative representation of the integral
$$I=int_{-pi/2}^{pi/2}
frac{8[5sin(2theta)+28cos(2theta)]}{cos(4theta)+15+8(m-2)sin^4(theta)}dtheta.$$
Any help would be appreciated.
integration definite-integrals
integration definite-integrals
edited 10 hours ago
user326159
asked 10 hours ago
user326159user326159
1,4821 gold badge9 silver badges22 bronze badges
1,4821 gold badge9 silver badges22 bronze badges
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
10 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
10 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
10 hours ago
2
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac{1}{alpha}right)sqrt{frac{2}{4alpha+3}}. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatorname{sign}(I(alpha)) = operatorname{sign}(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_{-infty}^{infty} frac{28(1-t^2)}{2+3t^2+2alpha^2 t^4}, mathrm{d}t, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
7 hours ago
add a comment |
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
10 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
10 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
10 hours ago
2
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac{1}{alpha}right)sqrt{frac{2}{4alpha+3}}. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatorname{sign}(I(alpha)) = operatorname{sign}(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_{-infty}^{infty} frac{28(1-t^2)}{2+3t^2+2alpha^2 t^4}, mathrm{d}t, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
7 hours ago
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
10 hours ago
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
10 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
10 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
10 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
10 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
10 hours ago
2
2
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac{1}{alpha}right)sqrt{frac{2}{4alpha+3}}. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatorname{sign}(I(alpha)) = operatorname{sign}(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_{-infty}^{infty} frac{28(1-t^2)}{2+3t^2+2alpha^2 t^4}, mathrm{d}t, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
7 hours ago
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac{1}{alpha}right)sqrt{frac{2}{4alpha+3}}. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatorname{sign}(I(alpha)) = operatorname{sign}(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_{-infty}^{infty} frac{28(1-t^2)}{2+3t^2+2alpha^2 t^4}, mathrm{d}t, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
7 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_{-pi/2}^{pi/2}frac{28cos 2theta+5sin2theta}{frac12(1+cos2theta)^2+frac34sin^2 2theta+frac{m}4(cos2theta-1)^2},mathrm{d}theta
$$
So
$$
I=frac12int_{-pi}^pifrac{28cosphi+5sinphi}{frac12(1+cosphi)^2+frac34sin^2 phi+frac{m}4(cosphi-1)^2},mathrm{d}phi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^{iphi}$, $-pileqphileqpi$ in $mathbb{C}$, hence it is just a matter of computing residues.
So
$$
I=frac12int_{mathbb{T}}frac{28cdotfrac12(z+z^{-1})+5cdotfrac1{2i}(z-z^{-1})}{frac12(1+frac12(z+z^{-1}))^2+frac34(-frac14(z-z^{-1})^2)+frac{m}4(frac12(z+z^{-1})-1)^2},frac{mathrm{d}z}{iz}
$$
which simplifies to
$$
I=frac1{2i}int_{mathbb{T}}
frac{8 ((28 + 5 i) + (28 - 5 i) z^2),mathrm{d}z}{(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2}
$$
The poles are at, if $mneq 1$,
$$
z+z^{-1}=frac{2(m-2pmsqrt{m})}{m-1}.
$$
so, since $m>0$
$$label{eq:poles}
z=
begin{cases}
0,frac12(3pmsqrt5)& m=1\
frac{2pmsqrt{m}pmsqrt{3pm 2sqrt{m}}}{1pmsqrt{m}}&mneq 1.
end{cases}tag{$star$}
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_{substack{lvert z_irvert<1\z_iineqref{eq:poles}}}operatorname{res}_{z_i}(dots)+(text{correction if }lvert z_irvert=1).
$$
$endgroup$
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
9 hours ago
add a comment |
$begingroup$
Define the function $mathcal{I}:mathbb{R}_{>0}rightarrowmathbb{R}$ via the trigonometric integral
$$begin{align}
mathcal{I}{left(muright)}
&:=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Let $muinmathbb{R}_{>0}$. Since the integral $mathcal{I}$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$begin{align}
mathcal{I}{left(muright)}
&=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{-frac{pi}{2}}^{0}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}-10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}};~~~small{left[thetamapsto-thetaright]}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{56cos^{2}{left(thetaright)}-56sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Using the double-angle formulas for sine and cosine,
$$begin{align}
sin{left(2thetaright)}
&=2sin{left(thetaright)}cos{left(thetaright)},\
cos{left(2thetaright)}
&=cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}\
&=2cos^{2}{left(thetaright)}-1\
&=1-2sin^{2}{left(thetaright)},\
end{align}$$
we can rewrite the integral as
$$begin{align}
mathcal{I}{left(muright)}
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos{left(2thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{8cos^{4}{left(thetaright)}+12cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+4musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{2left[1+cos{left(2thetaright)}right]^{2}+3sin^{2}{left(2thetaright)}+muleft[1-cos{left(2thetaright)}right]^{2}}\
&=56int_{0}^{pi}mathrm{d}theta,frac{2cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}};~~~small{left[thetamapstofrac12thetaright]}\
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}.\
end{align}$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$begin{align}
mathcal{I}{left(muright)}
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}\
&=112int_{0}^{infty}mathrm{d}t,frac{2}{1+t^{2}}cdotfrac{left(frac{1-t^{2}}{1+t^{2}}right)}{2left(1+frac{1-t^{2}}{1+t^{2}}right)^{2}+3left(frac{2t}{1+t^{2}}right)^{2}+muleft(1-frac{1-t^{2}}{1+t^{2}}right)^{2}};~~~small{left[theta=2arctan{left(tright)}right]}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+mu,t^{4}}.\
end{align}$$
Setting $sqrt{frac{2}{mu}}=:ainmathbb{R}_{>0}$ and $frac34a=:binmathbb{R}_{>0}$, we then have
$$begin{align}
mathcal{I}{left(muright)}
&=mathcal{I}{left(frac{2}{a^{2}}right)}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+2a^{-2}t^{4}}\
&=sqrt{a}int_{0}^{infty}mathrm{d}u,frac{56left(1-au^{2}right)}{2+3au^{2}+2u^{4}};~~~small{left[t=usqrt{a}right]}\
&=frac13sqrt{a}int_{0}^{infty}mathrm{d}u,frac{28left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{1}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3u^{2}-4bright)}{1+2bu^{2}+u^{4}};~~~small{left[umapstofrac{1}{u}right]}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bright)left(1+u^{2}right)}{1+2bu^{2}+u^{4}}\
&=28left(1-frac43bright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-aright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-sqrt{frac{2}{mu}}right)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=frac{28left(mu-2right)}{left(sqrt{mu}+sqrt{2}right)sqrt{mu}}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}.\
end{align}$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcal{I}$. We have
$$operatorname{sgn}{left(mathcal{I}{left(muright)}right)}=operatorname{sgn}{left(mu-2right)},$$
as you originally conjectured.
$endgroup$
add a comment |
$begingroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
$$f(-x)=frac{28cos^2x-10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
you could notice that the integral can be simplified to:
$$int_{-pi/2}^{pi/2}frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=int_{-pi/2}^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=2int_0^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=56int_0^{pi/2}frac{cos^2x-sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac{(1-t^2)^2-(2t)^2}{2(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4}dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_{-pi/2}^{pi/2}frac{28cos 2theta+5sin2theta}{frac12(1+cos2theta)^2+frac34sin^2 2theta+frac{m}4(cos2theta-1)^2},mathrm{d}theta
$$
So
$$
I=frac12int_{-pi}^pifrac{28cosphi+5sinphi}{frac12(1+cosphi)^2+frac34sin^2 phi+frac{m}4(cosphi-1)^2},mathrm{d}phi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^{iphi}$, $-pileqphileqpi$ in $mathbb{C}$, hence it is just a matter of computing residues.
So
$$
I=frac12int_{mathbb{T}}frac{28cdotfrac12(z+z^{-1})+5cdotfrac1{2i}(z-z^{-1})}{frac12(1+frac12(z+z^{-1}))^2+frac34(-frac14(z-z^{-1})^2)+frac{m}4(frac12(z+z^{-1})-1)^2},frac{mathrm{d}z}{iz}
$$
which simplifies to
$$
I=frac1{2i}int_{mathbb{T}}
frac{8 ((28 + 5 i) + (28 - 5 i) z^2),mathrm{d}z}{(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2}
$$
The poles are at, if $mneq 1$,
$$
z+z^{-1}=frac{2(m-2pmsqrt{m})}{m-1}.
$$
so, since $m>0$
$$label{eq:poles}
z=
begin{cases}
0,frac12(3pmsqrt5)& m=1\
frac{2pmsqrt{m}pmsqrt{3pm 2sqrt{m}}}{1pmsqrt{m}}&mneq 1.
end{cases}tag{$star$}
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_{substack{lvert z_irvert<1\z_iineqref{eq:poles}}}operatorname{res}_{z_i}(dots)+(text{correction if }lvert z_irvert=1).
$$
$endgroup$
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
9 hours ago
add a comment |
$begingroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_{-pi/2}^{pi/2}frac{28cos 2theta+5sin2theta}{frac12(1+cos2theta)^2+frac34sin^2 2theta+frac{m}4(cos2theta-1)^2},mathrm{d}theta
$$
So
$$
I=frac12int_{-pi}^pifrac{28cosphi+5sinphi}{frac12(1+cosphi)^2+frac34sin^2 phi+frac{m}4(cosphi-1)^2},mathrm{d}phi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^{iphi}$, $-pileqphileqpi$ in $mathbb{C}$, hence it is just a matter of computing residues.
So
$$
I=frac12int_{mathbb{T}}frac{28cdotfrac12(z+z^{-1})+5cdotfrac1{2i}(z-z^{-1})}{frac12(1+frac12(z+z^{-1}))^2+frac34(-frac14(z-z^{-1})^2)+frac{m}4(frac12(z+z^{-1})-1)^2},frac{mathrm{d}z}{iz}
$$
which simplifies to
$$
I=frac1{2i}int_{mathbb{T}}
frac{8 ((28 + 5 i) + (28 - 5 i) z^2),mathrm{d}z}{(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2}
$$
The poles are at, if $mneq 1$,
$$
z+z^{-1}=frac{2(m-2pmsqrt{m})}{m-1}.
$$
so, since $m>0$
$$label{eq:poles}
z=
begin{cases}
0,frac12(3pmsqrt5)& m=1\
frac{2pmsqrt{m}pmsqrt{3pm 2sqrt{m}}}{1pmsqrt{m}}&mneq 1.
end{cases}tag{$star$}
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_{substack{lvert z_irvert<1\z_iineqref{eq:poles}}}operatorname{res}_{z_i}(dots)+(text{correction if }lvert z_irvert=1).
$$
$endgroup$
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
9 hours ago
add a comment |
$begingroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_{-pi/2}^{pi/2}frac{28cos 2theta+5sin2theta}{frac12(1+cos2theta)^2+frac34sin^2 2theta+frac{m}4(cos2theta-1)^2},mathrm{d}theta
$$
So
$$
I=frac12int_{-pi}^pifrac{28cosphi+5sinphi}{frac12(1+cosphi)^2+frac34sin^2 phi+frac{m}4(cosphi-1)^2},mathrm{d}phi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^{iphi}$, $-pileqphileqpi$ in $mathbb{C}$, hence it is just a matter of computing residues.
So
$$
I=frac12int_{mathbb{T}}frac{28cdotfrac12(z+z^{-1})+5cdotfrac1{2i}(z-z^{-1})}{frac12(1+frac12(z+z^{-1}))^2+frac34(-frac14(z-z^{-1})^2)+frac{m}4(frac12(z+z^{-1})-1)^2},frac{mathrm{d}z}{iz}
$$
which simplifies to
$$
I=frac1{2i}int_{mathbb{T}}
frac{8 ((28 + 5 i) + (28 - 5 i) z^2),mathrm{d}z}{(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2}
$$
The poles are at, if $mneq 1$,
$$
z+z^{-1}=frac{2(m-2pmsqrt{m})}{m-1}.
$$
so, since $m>0$
$$label{eq:poles}
z=
begin{cases}
0,frac12(3pmsqrt5)& m=1\
frac{2pmsqrt{m}pmsqrt{3pm 2sqrt{m}}}{1pmsqrt{m}}&mneq 1.
end{cases}tag{$star$}
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_{substack{lvert z_irvert<1\z_iineqref{eq:poles}}}operatorname{res}_{z_i}(dots)+(text{correction if }lvert z_irvert=1).
$$
$endgroup$
This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_{-pi/2}^{pi/2}frac{28cos 2theta+5sin2theta}{frac12(1+cos2theta)^2+frac34sin^2 2theta+frac{m}4(cos2theta-1)^2},mathrm{d}theta
$$
So
$$
I=frac12int_{-pi}^pifrac{28cosphi+5sinphi}{frac12(1+cosphi)^2+frac34sin^2 phi+frac{m}4(cosphi-1)^2},mathrm{d}phi
$$
which we can rewrite as a contour integral of a rational function over the unit circle $z=e^{iphi}$, $-pileqphileqpi$ in $mathbb{C}$, hence it is just a matter of computing residues.
So
$$
I=frac12int_{mathbb{T}}frac{28cdotfrac12(z+z^{-1})+5cdotfrac1{2i}(z-z^{-1})}{frac12(1+frac12(z+z^{-1}))^2+frac34(-frac14(z-z^{-1})^2)+frac{m}4(frac12(z+z^{-1})-1)^2},frac{mathrm{d}z}{iz}
$$
which simplifies to
$$
I=frac1{2i}int_{mathbb{T}}
frac{8 ((28 + 5 i) + (28 - 5 i) z^2),mathrm{d}z}{(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2}
$$
The poles are at, if $mneq 1$,
$$
z+z^{-1}=frac{2(m-2pmsqrt{m})}{m-1}.
$$
so, since $m>0$
$$label{eq:poles}
z=
begin{cases}
0,frac12(3pmsqrt5)& m=1\
frac{2pmsqrt{m}pmsqrt{3pm 2sqrt{m}}}{1pmsqrt{m}}&mneq 1.
end{cases}tag{$star$}
$$
So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_{substack{lvert z_irvert<1\z_iineqref{eq:poles}}}operatorname{res}_{z_i}(dots)+(text{correction if }lvert z_irvert=1).
$$
edited 9 hours ago
answered 10 hours ago
user10354138user10354138
17.4k2 gold badges12 silver badges32 bronze badges
17.4k2 gold badges12 silver badges32 bronze badges
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
9 hours ago
add a comment |
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
9 hours ago
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
9 hours ago
$begingroup$
Can you give more details of this method?
$endgroup$
– user326159
9 hours ago
add a comment |
$begingroup$
Define the function $mathcal{I}:mathbb{R}_{>0}rightarrowmathbb{R}$ via the trigonometric integral
$$begin{align}
mathcal{I}{left(muright)}
&:=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Let $muinmathbb{R}_{>0}$. Since the integral $mathcal{I}$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$begin{align}
mathcal{I}{left(muright)}
&=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{-frac{pi}{2}}^{0}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}-10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}};~~~small{left[thetamapsto-thetaright]}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{56cos^{2}{left(thetaright)}-56sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Using the double-angle formulas for sine and cosine,
$$begin{align}
sin{left(2thetaright)}
&=2sin{left(thetaright)}cos{left(thetaright)},\
cos{left(2thetaright)}
&=cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}\
&=2cos^{2}{left(thetaright)}-1\
&=1-2sin^{2}{left(thetaright)},\
end{align}$$
we can rewrite the integral as
$$begin{align}
mathcal{I}{left(muright)}
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos{left(2thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{8cos^{4}{left(thetaright)}+12cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+4musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{2left[1+cos{left(2thetaright)}right]^{2}+3sin^{2}{left(2thetaright)}+muleft[1-cos{left(2thetaright)}right]^{2}}\
&=56int_{0}^{pi}mathrm{d}theta,frac{2cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}};~~~small{left[thetamapstofrac12thetaright]}\
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}.\
end{align}$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$begin{align}
mathcal{I}{left(muright)}
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}\
&=112int_{0}^{infty}mathrm{d}t,frac{2}{1+t^{2}}cdotfrac{left(frac{1-t^{2}}{1+t^{2}}right)}{2left(1+frac{1-t^{2}}{1+t^{2}}right)^{2}+3left(frac{2t}{1+t^{2}}right)^{2}+muleft(1-frac{1-t^{2}}{1+t^{2}}right)^{2}};~~~small{left[theta=2arctan{left(tright)}right]}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+mu,t^{4}}.\
end{align}$$
Setting $sqrt{frac{2}{mu}}=:ainmathbb{R}_{>0}$ and $frac34a=:binmathbb{R}_{>0}$, we then have
$$begin{align}
mathcal{I}{left(muright)}
&=mathcal{I}{left(frac{2}{a^{2}}right)}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+2a^{-2}t^{4}}\
&=sqrt{a}int_{0}^{infty}mathrm{d}u,frac{56left(1-au^{2}right)}{2+3au^{2}+2u^{4}};~~~small{left[t=usqrt{a}right]}\
&=frac13sqrt{a}int_{0}^{infty}mathrm{d}u,frac{28left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{1}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3u^{2}-4bright)}{1+2bu^{2}+u^{4}};~~~small{left[umapstofrac{1}{u}right]}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bright)left(1+u^{2}right)}{1+2bu^{2}+u^{4}}\
&=28left(1-frac43bright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-aright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-sqrt{frac{2}{mu}}right)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=frac{28left(mu-2right)}{left(sqrt{mu}+sqrt{2}right)sqrt{mu}}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}.\
end{align}$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcal{I}$. We have
$$operatorname{sgn}{left(mathcal{I}{left(muright)}right)}=operatorname{sgn}{left(mu-2right)},$$
as you originally conjectured.
$endgroup$
add a comment |
$begingroup$
Define the function $mathcal{I}:mathbb{R}_{>0}rightarrowmathbb{R}$ via the trigonometric integral
$$begin{align}
mathcal{I}{left(muright)}
&:=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Let $muinmathbb{R}_{>0}$. Since the integral $mathcal{I}$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$begin{align}
mathcal{I}{left(muright)}
&=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{-frac{pi}{2}}^{0}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}-10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}};~~~small{left[thetamapsto-thetaright]}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{56cos^{2}{left(thetaright)}-56sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Using the double-angle formulas for sine and cosine,
$$begin{align}
sin{left(2thetaright)}
&=2sin{left(thetaright)}cos{left(thetaright)},\
cos{left(2thetaright)}
&=cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}\
&=2cos^{2}{left(thetaright)}-1\
&=1-2sin^{2}{left(thetaright)},\
end{align}$$
we can rewrite the integral as
$$begin{align}
mathcal{I}{left(muright)}
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos{left(2thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{8cos^{4}{left(thetaright)}+12cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+4musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{2left[1+cos{left(2thetaright)}right]^{2}+3sin^{2}{left(2thetaright)}+muleft[1-cos{left(2thetaright)}right]^{2}}\
&=56int_{0}^{pi}mathrm{d}theta,frac{2cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}};~~~small{left[thetamapstofrac12thetaright]}\
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}.\
end{align}$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$begin{align}
mathcal{I}{left(muright)}
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}\
&=112int_{0}^{infty}mathrm{d}t,frac{2}{1+t^{2}}cdotfrac{left(frac{1-t^{2}}{1+t^{2}}right)}{2left(1+frac{1-t^{2}}{1+t^{2}}right)^{2}+3left(frac{2t}{1+t^{2}}right)^{2}+muleft(1-frac{1-t^{2}}{1+t^{2}}right)^{2}};~~~small{left[theta=2arctan{left(tright)}right]}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+mu,t^{4}}.\
end{align}$$
Setting $sqrt{frac{2}{mu}}=:ainmathbb{R}_{>0}$ and $frac34a=:binmathbb{R}_{>0}$, we then have
$$begin{align}
mathcal{I}{left(muright)}
&=mathcal{I}{left(frac{2}{a^{2}}right)}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+2a^{-2}t^{4}}\
&=sqrt{a}int_{0}^{infty}mathrm{d}u,frac{56left(1-au^{2}right)}{2+3au^{2}+2u^{4}};~~~small{left[t=usqrt{a}right]}\
&=frac13sqrt{a}int_{0}^{infty}mathrm{d}u,frac{28left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{1}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3u^{2}-4bright)}{1+2bu^{2}+u^{4}};~~~small{left[umapstofrac{1}{u}right]}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bright)left(1+u^{2}right)}{1+2bu^{2}+u^{4}}\
&=28left(1-frac43bright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-aright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-sqrt{frac{2}{mu}}right)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=frac{28left(mu-2right)}{left(sqrt{mu}+sqrt{2}right)sqrt{mu}}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}.\
end{align}$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcal{I}$. We have
$$operatorname{sgn}{left(mathcal{I}{left(muright)}right)}=operatorname{sgn}{left(mu-2right)},$$
as you originally conjectured.
$endgroup$
add a comment |
$begingroup$
Define the function $mathcal{I}:mathbb{R}_{>0}rightarrowmathbb{R}$ via the trigonometric integral
$$begin{align}
mathcal{I}{left(muright)}
&:=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Let $muinmathbb{R}_{>0}$. Since the integral $mathcal{I}$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$begin{align}
mathcal{I}{left(muright)}
&=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{-frac{pi}{2}}^{0}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}-10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}};~~~small{left[thetamapsto-thetaright]}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{56cos^{2}{left(thetaright)}-56sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Using the double-angle formulas for sine and cosine,
$$begin{align}
sin{left(2thetaright)}
&=2sin{left(thetaright)}cos{left(thetaright)},\
cos{left(2thetaright)}
&=cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}\
&=2cos^{2}{left(thetaright)}-1\
&=1-2sin^{2}{left(thetaright)},\
end{align}$$
we can rewrite the integral as
$$begin{align}
mathcal{I}{left(muright)}
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos{left(2thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{8cos^{4}{left(thetaright)}+12cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+4musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{2left[1+cos{left(2thetaright)}right]^{2}+3sin^{2}{left(2thetaright)}+muleft[1-cos{left(2thetaright)}right]^{2}}\
&=56int_{0}^{pi}mathrm{d}theta,frac{2cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}};~~~small{left[thetamapstofrac12thetaright]}\
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}.\
end{align}$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$begin{align}
mathcal{I}{left(muright)}
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}\
&=112int_{0}^{infty}mathrm{d}t,frac{2}{1+t^{2}}cdotfrac{left(frac{1-t^{2}}{1+t^{2}}right)}{2left(1+frac{1-t^{2}}{1+t^{2}}right)^{2}+3left(frac{2t}{1+t^{2}}right)^{2}+muleft(1-frac{1-t^{2}}{1+t^{2}}right)^{2}};~~~small{left[theta=2arctan{left(tright)}right]}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+mu,t^{4}}.\
end{align}$$
Setting $sqrt{frac{2}{mu}}=:ainmathbb{R}_{>0}$ and $frac34a=:binmathbb{R}_{>0}$, we then have
$$begin{align}
mathcal{I}{left(muright)}
&=mathcal{I}{left(frac{2}{a^{2}}right)}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+2a^{-2}t^{4}}\
&=sqrt{a}int_{0}^{infty}mathrm{d}u,frac{56left(1-au^{2}right)}{2+3au^{2}+2u^{4}};~~~small{left[t=usqrt{a}right]}\
&=frac13sqrt{a}int_{0}^{infty}mathrm{d}u,frac{28left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{1}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3u^{2}-4bright)}{1+2bu^{2}+u^{4}};~~~small{left[umapstofrac{1}{u}right]}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bright)left(1+u^{2}right)}{1+2bu^{2}+u^{4}}\
&=28left(1-frac43bright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-aright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-sqrt{frac{2}{mu}}right)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=frac{28left(mu-2right)}{left(sqrt{mu}+sqrt{2}right)sqrt{mu}}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}.\
end{align}$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcal{I}$. We have
$$operatorname{sgn}{left(mathcal{I}{left(muright)}right)}=operatorname{sgn}{left(mu-2right)},$$
as you originally conjectured.
$endgroup$
Define the function $mathcal{I}:mathbb{R}_{>0}rightarrowmathbb{R}$ via the trigonometric integral
$$begin{align}
mathcal{I}{left(muright)}
&:=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Let $muinmathbb{R}_{>0}$. Since the integral $mathcal{I}$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:
$$begin{align}
mathcal{I}{left(muright)}
&=int_{-frac{pi}{2}}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{-frac{pi}{2}}^{0}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}-10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}};~~~small{left[thetamapsto-thetaright]}\
&~~~~~+int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{28cos^{2}{left(thetaright)}+10cos{left(thetaright)}sin{left(thetaright)}-28sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{56cos^{2}{left(thetaright)}-56sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}.\
end{align}$$
Using the double-angle formulas for sine and cosine,
$$begin{align}
sin{left(2thetaright)}
&=2sin{left(thetaright)}cos{left(thetaright)},\
cos{left(2thetaright)}
&=cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}\
&=2cos^{2}{left(thetaright)}-1\
&=1-2sin^{2}{left(thetaright)},\
end{align}$$
we can rewrite the integral as
$$begin{align}
mathcal{I}{left(muright)}
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos^{2}{left(thetaright)}-sin^{2}{left(thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{cos{left(2thetaright)}}{2cos^{4}{left(thetaright)}+3cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{8cos^{4}{left(thetaright)}+12cos^{2}{left(thetaright)}sin^{2}{left(thetaright)}+4musin^{4}{left(thetaright)}}\
&=56int_{0}^{frac{pi}{2}}mathrm{d}theta,frac{4cos{left(2thetaright)}}{2left[1+cos{left(2thetaright)}right]^{2}+3sin^{2}{left(2thetaright)}+muleft[1-cos{left(2thetaright)}right]^{2}}\
&=56int_{0}^{pi}mathrm{d}theta,frac{2cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}};~~~small{left[thetamapstofrac12thetaright]}\
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}.\
end{align}$$
Using the tangent half-angle substitution, the trigonometric integral transforms as
$$begin{align}
mathcal{I}{left(muright)}
&=112int_{0}^{pi}mathrm{d}theta,frac{cos{left(thetaright)}}{2left[1+cos{left(thetaright)}right]^{2}+3sin^{2}{left(thetaright)}+muleft[1-cos{left(thetaright)}right]^{2}}\
&=112int_{0}^{infty}mathrm{d}t,frac{2}{1+t^{2}}cdotfrac{left(frac{1-t^{2}}{1+t^{2}}right)}{2left(1+frac{1-t^{2}}{1+t^{2}}right)^{2}+3left(frac{2t}{1+t^{2}}right)^{2}+muleft(1-frac{1-t^{2}}{1+t^{2}}right)^{2}};~~~small{left[theta=2arctan{left(tright)}right]}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+mu,t^{4}}.\
end{align}$$
Setting $sqrt{frac{2}{mu}}=:ainmathbb{R}_{>0}$ and $frac34a=:binmathbb{R}_{>0}$, we then have
$$begin{align}
mathcal{I}{left(muright)}
&=mathcal{I}{left(frac{2}{a^{2}}right)}\
&=int_{0}^{infty}mathrm{d}t,frac{56left(1-t^{2}right)}{2+3t^{2}+2a^{-2}t^{4}}\
&=sqrt{a}int_{0}^{infty}mathrm{d}u,frac{56left(1-au^{2}right)}{2+3au^{2}+2u^{4}};~~~small{left[t=usqrt{a}right]}\
&=frac13sqrt{a}int_{0}^{infty}mathrm{d}u,frac{28left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{1}^{infty}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bu^{2}right)}{1+2bu^{2}+u^{4}}\
&~~~~~+frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3u^{2}-4bright)}{1+2bu^{2}+u^{4}};~~~small{left[umapstofrac{1}{u}right]}\
&=frac{28}{3}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{left(3-4bright)left(1+u^{2}right)}{1+2bu^{2}+u^{4}}\
&=28left(1-frac43bright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-aright)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=28left(1-sqrt{frac{2}{mu}}right)sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}\
&=frac{28left(mu-2right)}{left(sqrt{mu}+sqrt{2}right)sqrt{mu}}sqrt[4]{frac{2}{mu}}int_{0}^{1}mathrm{d}u,frac{1+u^{2}}{1+2bu^{2}+u^{4}}.\
end{align}$$
Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcal{I}$. We have
$$operatorname{sgn}{left(mathcal{I}{left(muright)}right)}=operatorname{sgn}{left(mu-2right)},$$
as you originally conjectured.
answered 5 hours ago
David HDavid H
22.2k2 gold badges49 silver badges96 bronze badges
22.2k2 gold badges49 silver badges96 bronze badges
add a comment |
add a comment |
$begingroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
$$f(-x)=frac{28cos^2x-10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
you could notice that the integral can be simplified to:
$$int_{-pi/2}^{pi/2}frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=int_{-pi/2}^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=2int_0^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=56int_0^{pi/2}frac{cos^2x-sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac{(1-t^2)^2-(2t)^2}{2(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4}dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
$endgroup$
add a comment |
$begingroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
$$f(-x)=frac{28cos^2x-10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
you could notice that the integral can be simplified to:
$$int_{-pi/2}^{pi/2}frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=int_{-pi/2}^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=2int_0^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=56int_0^{pi/2}frac{cos^2x-sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac{(1-t^2)^2-(2t)^2}{2(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4}dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
$endgroup$
add a comment |
$begingroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
$$f(-x)=frac{28cos^2x-10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
you could notice that the integral can be simplified to:
$$int_{-pi/2}^{pi/2}frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=int_{-pi/2}^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=2int_0^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=56int_0^{pi/2}frac{cos^2x-sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac{(1-t^2)^2-(2t)^2}{2(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4}dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
$endgroup$
note that since the function part of the function is odd i.e:
$$f(x)=frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
$$f(-x)=frac{28cos^2x-10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}$$
you could notice that the integral can be simplified to:
$$int_{-pi/2}^{pi/2}frac{28cos^2x+10cos xsin x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=int_{-pi/2}^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=2int_0^{pi/2}frac{28cos^2x-28sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
$$=56int_0^{pi/2}frac{cos^2x-sin^2x}{2cos^4x+3cos^2xsin^2x+msin^4x}dx$$
One route you could try to take is Tangent half-angle substitution, which yields:
$$112int_0^1(1+t^2)frac{(1-t^2)^2-(2t)^2}{2(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4}dt$$
the bottom of this fraction can be expanded to:
$$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
this may be factorisable for certain values of $m$
edited 10 hours ago
answered 10 hours ago
Henry LeeHenry Lee
2,6991 gold badge4 silver badges19 bronze badges
2,6991 gold badge4 silver badges19 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
10 hours ago
$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
10 hours ago
$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
10 hours ago
2
$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac{1}{alpha}right)sqrt{frac{2}{4alpha+3}}. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatorname{sign}(I(alpha)) = operatorname{sign}(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_{-infty}^{infty} frac{28(1-t^2)}{2+3t^2+2alpha^2 t^4}, mathrm{d}t, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
7 hours ago