Open subspaces of CW complexesCounterexamples in algebraic topology?Is the polynomial de Rham functor a...
Open subspaces of CW complexes
Counterexamples in algebraic topology?Is the polynomial de Rham functor a Quillen equivalence?When is the category of pro-objects a homotopy category?Question about topological monoid mapsAre infinite simplicial complexes all manifolds?What do absolute neighborhood retracts look like?In a topological space if there exists a loop that cannot be contracted to a point does there exist a simple loop that cannot be contracted also?
$begingroup$
I am looking at the paper
Covering homotopy properties of maps between CW complexes or ANRs
by
Mark Steinberger and James West
and a claim is made in the proof of their first main theorem that (slightly rephrased)
since $U$ is a contractible subspace of the CW complex $B$, $U$ "is" a CW complex
Question: Is it generally true that an open subspace of a CW complex can be given the structure of a CW complex? Is it true in general only for contractible subspaces? Why? Is there a reference?
at.algebraic-topology gn.general-topology homotopy-theory
$endgroup$
add a comment |
$begingroup$
I am looking at the paper
Covering homotopy properties of maps between CW complexes or ANRs
by
Mark Steinberger and James West
and a claim is made in the proof of their first main theorem that (slightly rephrased)
since $U$ is a contractible subspace of the CW complex $B$, $U$ "is" a CW complex
Question: Is it generally true that an open subspace of a CW complex can be given the structure of a CW complex? Is it true in general only for contractible subspaces? Why? Is there a reference?
at.algebraic-topology gn.general-topology homotopy-theory
$endgroup$
$begingroup$
As John mentions, there are counter-examples to open subsets of CW-complexes being CW-complexes, but I believe under reasonable "finiteness" assumptions the result should be true. I have not looked at the counter-examples John cites but I imagine they are due to the CW-complex having fairly "bad" attaching maps. In my mind I'm imagining an adaptation of the proof that open subsets of $mathbb R^n$ admit CW-structures.
$endgroup$
– Ryan Budney
6 hours ago
1
$begingroup$
One of Cauty's counterexamples has only three cells, so the problem is not about finiteness, but rather about the attaching maps. Regular CW complexes can be triangulated, and open subsets of simplicial complexes can again be triangulated, so it is true that open subsets of regular CW complexes are CW spaces.
$endgroup$
– John Rognes
6 hours ago
add a comment |
$begingroup$
I am looking at the paper
Covering homotopy properties of maps between CW complexes or ANRs
by
Mark Steinberger and James West
and a claim is made in the proof of their first main theorem that (slightly rephrased)
since $U$ is a contractible subspace of the CW complex $B$, $U$ "is" a CW complex
Question: Is it generally true that an open subspace of a CW complex can be given the structure of a CW complex? Is it true in general only for contractible subspaces? Why? Is there a reference?
at.algebraic-topology gn.general-topology homotopy-theory
$endgroup$
I am looking at the paper
Covering homotopy properties of maps between CW complexes or ANRs
by
Mark Steinberger and James West
and a claim is made in the proof of their first main theorem that (slightly rephrased)
since $U$ is a contractible subspace of the CW complex $B$, $U$ "is" a CW complex
Question: Is it generally true that an open subspace of a CW complex can be given the structure of a CW complex? Is it true in general only for contractible subspaces? Why? Is there a reference?
at.algebraic-topology gn.general-topology homotopy-theory
at.algebraic-topology gn.general-topology homotopy-theory
asked 11 hours ago
Jeff StromJeff Strom
7,9292 gold badges31 silver badges61 bronze badges
7,9292 gold badges31 silver badges61 bronze badges
$begingroup$
As John mentions, there are counter-examples to open subsets of CW-complexes being CW-complexes, but I believe under reasonable "finiteness" assumptions the result should be true. I have not looked at the counter-examples John cites but I imagine they are due to the CW-complex having fairly "bad" attaching maps. In my mind I'm imagining an adaptation of the proof that open subsets of $mathbb R^n$ admit CW-structures.
$endgroup$
– Ryan Budney
6 hours ago
1
$begingroup$
One of Cauty's counterexamples has only three cells, so the problem is not about finiteness, but rather about the attaching maps. Regular CW complexes can be triangulated, and open subsets of simplicial complexes can again be triangulated, so it is true that open subsets of regular CW complexes are CW spaces.
$endgroup$
– John Rognes
6 hours ago
add a comment |
$begingroup$
As John mentions, there are counter-examples to open subsets of CW-complexes being CW-complexes, but I believe under reasonable "finiteness" assumptions the result should be true. I have not looked at the counter-examples John cites but I imagine they are due to the CW-complex having fairly "bad" attaching maps. In my mind I'm imagining an adaptation of the proof that open subsets of $mathbb R^n$ admit CW-structures.
$endgroup$
– Ryan Budney
6 hours ago
1
$begingroup$
One of Cauty's counterexamples has only three cells, so the problem is not about finiteness, but rather about the attaching maps. Regular CW complexes can be triangulated, and open subsets of simplicial complexes can again be triangulated, so it is true that open subsets of regular CW complexes are CW spaces.
$endgroup$
– John Rognes
6 hours ago
$begingroup$
As John mentions, there are counter-examples to open subsets of CW-complexes being CW-complexes, but I believe under reasonable "finiteness" assumptions the result should be true. I have not looked at the counter-examples John cites but I imagine they are due to the CW-complex having fairly "bad" attaching maps. In my mind I'm imagining an adaptation of the proof that open subsets of $mathbb R^n$ admit CW-structures.
$endgroup$
– Ryan Budney
6 hours ago
$begingroup$
As John mentions, there are counter-examples to open subsets of CW-complexes being CW-complexes, but I believe under reasonable "finiteness" assumptions the result should be true. I have not looked at the counter-examples John cites but I imagine they are due to the CW-complex having fairly "bad" attaching maps. In my mind I'm imagining an adaptation of the proof that open subsets of $mathbb R^n$ admit CW-structures.
$endgroup$
– Ryan Budney
6 hours ago
1
1
$begingroup$
One of Cauty's counterexamples has only three cells, so the problem is not about finiteness, but rather about the attaching maps. Regular CW complexes can be triangulated, and open subsets of simplicial complexes can again be triangulated, so it is true that open subsets of regular CW complexes are CW spaces.
$endgroup$
– John Rognes
6 hours ago
$begingroup$
One of Cauty's counterexamples has only three cells, so the problem is not about finiteness, but rather about the attaching maps. Regular CW complexes can be triangulated, and open subsets of simplicial complexes can again be triangulated, so it is true that open subsets of regular CW complexes are CW spaces.
$endgroup$
– John Rognes
6 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
It is not generally true that each open subset of a CW complex admits the structure of a CW complex. Counterexamples were given in
bib{MR1157891}{article}{
author={Cauty, Robert},
title={Sur les ouverts des CW-complexes et les fibr'{e}s de Serre},
language={French},
journal={Colloq. Math.},
volume={63},
date={1992},
number={1},
pages={1--7},
issn={0010-1354},
review={MR{1157891}},
doi={10.4064/cm-63-1-1-7},
}
in response to the paper you mention by Steinberger and West. Here is the abstract:
M. Steinberger et J. West ont prouvé dans [7] qu'un fibré de Serre p:E
→ B entre CW-complexes a la propriété de relèvement des homotopies par
rapport aux k-espaces. Malheureusement, leur démonstration contient
une légère erreur. Ils affirment que certains ensembles (notés U et
p−1U×U) sont des CW-complexes car ce sont des ouverts de CW-complexes.
Ceci est généralement faux, et notre premier objectif dans cette note
est de donner des exemples d'ouverts de CW-complexes n'admettant
aucune décomposition CW. Malgré cela, le théorème de Steinberger et
West est vrai, et notre deuxième objectif est de montrer comment leur
démonstration peut être rectifiée.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "504"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f339207%2fopen-subspaces-of-cw-complexes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is not generally true that each open subset of a CW complex admits the structure of a CW complex. Counterexamples were given in
bib{MR1157891}{article}{
author={Cauty, Robert},
title={Sur les ouverts des CW-complexes et les fibr'{e}s de Serre},
language={French},
journal={Colloq. Math.},
volume={63},
date={1992},
number={1},
pages={1--7},
issn={0010-1354},
review={MR{1157891}},
doi={10.4064/cm-63-1-1-7},
}
in response to the paper you mention by Steinberger and West. Here is the abstract:
M. Steinberger et J. West ont prouvé dans [7] qu'un fibré de Serre p:E
→ B entre CW-complexes a la propriété de relèvement des homotopies par
rapport aux k-espaces. Malheureusement, leur démonstration contient
une légère erreur. Ils affirment que certains ensembles (notés U et
p−1U×U) sont des CW-complexes car ce sont des ouverts de CW-complexes.
Ceci est généralement faux, et notre premier objectif dans cette note
est de donner des exemples d'ouverts de CW-complexes n'admettant
aucune décomposition CW. Malgré cela, le théorème de Steinberger et
West est vrai, et notre deuxième objectif est de montrer comment leur
démonstration peut être rectifiée.
$endgroup$
add a comment |
$begingroup$
It is not generally true that each open subset of a CW complex admits the structure of a CW complex. Counterexamples were given in
bib{MR1157891}{article}{
author={Cauty, Robert},
title={Sur les ouverts des CW-complexes et les fibr'{e}s de Serre},
language={French},
journal={Colloq. Math.},
volume={63},
date={1992},
number={1},
pages={1--7},
issn={0010-1354},
review={MR{1157891}},
doi={10.4064/cm-63-1-1-7},
}
in response to the paper you mention by Steinberger and West. Here is the abstract:
M. Steinberger et J. West ont prouvé dans [7] qu'un fibré de Serre p:E
→ B entre CW-complexes a la propriété de relèvement des homotopies par
rapport aux k-espaces. Malheureusement, leur démonstration contient
une légère erreur. Ils affirment que certains ensembles (notés U et
p−1U×U) sont des CW-complexes car ce sont des ouverts de CW-complexes.
Ceci est généralement faux, et notre premier objectif dans cette note
est de donner des exemples d'ouverts de CW-complexes n'admettant
aucune décomposition CW. Malgré cela, le théorème de Steinberger et
West est vrai, et notre deuxième objectif est de montrer comment leur
démonstration peut être rectifiée.
$endgroup$
add a comment |
$begingroup$
It is not generally true that each open subset of a CW complex admits the structure of a CW complex. Counterexamples were given in
bib{MR1157891}{article}{
author={Cauty, Robert},
title={Sur les ouverts des CW-complexes et les fibr'{e}s de Serre},
language={French},
journal={Colloq. Math.},
volume={63},
date={1992},
number={1},
pages={1--7},
issn={0010-1354},
review={MR{1157891}},
doi={10.4064/cm-63-1-1-7},
}
in response to the paper you mention by Steinberger and West. Here is the abstract:
M. Steinberger et J. West ont prouvé dans [7] qu'un fibré de Serre p:E
→ B entre CW-complexes a la propriété de relèvement des homotopies par
rapport aux k-espaces. Malheureusement, leur démonstration contient
une légère erreur. Ils affirment que certains ensembles (notés U et
p−1U×U) sont des CW-complexes car ce sont des ouverts de CW-complexes.
Ceci est généralement faux, et notre premier objectif dans cette note
est de donner des exemples d'ouverts de CW-complexes n'admettant
aucune décomposition CW. Malgré cela, le théorème de Steinberger et
West est vrai, et notre deuxième objectif est de montrer comment leur
démonstration peut être rectifiée.
$endgroup$
It is not generally true that each open subset of a CW complex admits the structure of a CW complex. Counterexamples were given in
bib{MR1157891}{article}{
author={Cauty, Robert},
title={Sur les ouverts des CW-complexes et les fibr'{e}s de Serre},
language={French},
journal={Colloq. Math.},
volume={63},
date={1992},
number={1},
pages={1--7},
issn={0010-1354},
review={MR{1157891}},
doi={10.4064/cm-63-1-1-7},
}
in response to the paper you mention by Steinberger and West. Here is the abstract:
M. Steinberger et J. West ont prouvé dans [7] qu'un fibré de Serre p:E
→ B entre CW-complexes a la propriété de relèvement des homotopies par
rapport aux k-espaces. Malheureusement, leur démonstration contient
une légère erreur. Ils affirment que certains ensembles (notés U et
p−1U×U) sont des CW-complexes car ce sont des ouverts de CW-complexes.
Ceci est généralement faux, et notre premier objectif dans cette note
est de donner des exemples d'ouverts de CW-complexes n'admettant
aucune décomposition CW. Malgré cela, le théorème de Steinberger et
West est vrai, et notre deuxième objectif est de montrer comment leur
démonstration peut être rectifiée.
answered 6 hours ago
John RognesJohn Rognes
5,03626 silver badges30 bronze badges
5,03626 silver badges30 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f339207%2fopen-subspaces-of-cw-complexes%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
As John mentions, there are counter-examples to open subsets of CW-complexes being CW-complexes, but I believe under reasonable "finiteness" assumptions the result should be true. I have not looked at the counter-examples John cites but I imagine they are due to the CW-complex having fairly "bad" attaching maps. In my mind I'm imagining an adaptation of the proof that open subsets of $mathbb R^n$ admit CW-structures.
$endgroup$
– Ryan Budney
6 hours ago
1
$begingroup$
One of Cauty's counterexamples has only three cells, so the problem is not about finiteness, but rather about the attaching maps. Regular CW complexes can be triangulated, and open subsets of simplicial complexes can again be triangulated, so it is true that open subsets of regular CW complexes are CW spaces.
$endgroup$
– John Rognes
6 hours ago